Giải bài tập 3 trang 11 SGK Toán 9 tập 1 - Cánh diều

2024-09-14 18:24:54

Đề bài

Một ca nô đi xuôi dòng từ địa điểm A đến địa điểm B, rồi lại đi ngược dòng từ địa điểm B trở về địa điểm A. Thời gian cả đi và về là 3 giờ. Tính tốc độ của dòng nước. Biết tốc độ của ca nô khi nước yên lặng là 27km/h và độ dài quãng đường AB là 40km.

Phương pháp giải - Xem chi tiết

+ Gọi ẩn \(x\). Tìm điều kiện và đơn vị của ẩn.

+ Biểu diễn các đại lượng thông qua \(x\).

+ Tìm phương trình liên hệ.

+ Giải phương trình.

+ Đối chiếu với điều kiện của \(x\).

+ Kết luận bài toán.

Lời giải chi tiết

Gọi tốc độ của dòng nước là: \(x\) (km/h, 0 < x < 27)

Vận tốc cano khi xuôi dòng là:\(27 + x\) (km/h);

Vận tốc cano khi ngược dòng là: \(27 - x\) (km/h);

Thời gian cano khi xuôi dòng là: \(\frac{{40}}{{27 + x}}\) (giờ);

Thời gian cano khi ngược dòng là: \(\frac{{40}}{{27 - x}}\) (giờ).

Do thời gian cả đi và về là 3 giờ nên ta có phương trình:

\(\frac{{40}}{{27 + x}} + \frac{{40}}{{27 - x}} = 3\)

\(\frac{{40\left( {27 - x} \right)}}{{\left( {27 + x} \right)\left( {27 - x} \right)}} + \frac{{40\left( {27 + x} \right)}}{{\left( {27 + x} \right)\left( {27 - x} \right)}} = \frac{{3\left( {27 + x} \right)\left( {27 - x} \right)}}{{\left( {27 + x} \right)\left( {27 - x} \right)}}\)

\(1080 - 40x + 1080 + 40x = 3\left( {729 - {x^2}} \right)\)

\(2160 = 2187 - 3{x^2}\)

\(3{x^2} - 27 = 0\)

\(3{x^2} = 27\)

\({x^2} = 9\)

\(x = 3\) (Thỏa mãn điều kiện).

Vậy tốc độ của dòng nước là 3 (km/h).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"