Giải mục 1 trang 5, 6, 7 SGK Toán 9 tập 1 - Cánh diều

2024-09-14 18:24:55

HĐ1

Trả lời câu hỏi Hoạt động 1 trang 5 SGK Toán 9 Cánh diều

a. Cho hai số thực \(u,v\) có tích \(uv = 0\). Có nhận xét gì về giá trị của u, v?

b. Cho phương trình \(\left( {x - 3} \right)\left( {2x + 1} \right) = 0\).

- Chứng tỏ rằng nghiệm của phương trình \(x - 3 = 0\) và nghiêm của phương trình \(2x + 1 = 0\)  đều là nghiệm của phương trình \(\left( {x - 3} \right)\left( {2x + 1} \right) = 0\).

- Giả sử \(x = {x_0}\) là nghiệm của phương trình \(\left( {x - 3} \right)\left( {2x + 1} \right) = 0\) . Giá trị \(x = x_0^{}\) có phải là nghiệm của phương trình \(x - 3 = 0\)  hoặc phương trình \(2x + 1 = 0\) hay không?

Phương pháp giải:

+ Dựa vào phương trình đã học ở lớp 8 để nhận xét phương trình.

+ Giải phương trình tìm nghiệm.

+ Thay nghiệm vào phương trình tích để chứng tỏ.

Lời giải chi tiết:

a. Nhận xét: u = 0 hoặc v = 0.

b.

Ý 1:

+ Ta có: \(x - 3 = 0 \) suy ra \(x = 3\).

+ Ta có: \(2x + 1 = 0 \) suy ra \(x =  - \frac{1}{2}\).

Ý 2:

+ Thay \(x = 3\) vào phương trình \(\left( {x - 3} \right)\left( {2x + 1} \right) = 0\) ta được:

\(\left( {3 - 3} \right)\left( {2.3 + 1} \right) = 0 \Leftrightarrow 0.7 = 0 \Leftrightarrow 0 = 0\) (luôn đúng).

Vậy \(x = 3\) là nghiệm của phương trình \(\left( {x - 3} \right)\left( {2x + 1} \right) = 0\).

+ Thay \(x =  - \frac{1}{2}\) vào phương trình \(\left( {x - 3} \right)\left( {2x + 1} \right) = 0\) ta được:

\(\left( { - \frac{1}{2} - 3} \right)\left[ {2.\left( { - \frac{1}{2}} \right) + 1} \right] = 0 \Leftrightarrow  - \frac{7}{2}.0 = 0 \Leftrightarrow 0 = 0\) (luôn đúng).

Vậy \(x =  - \frac{1}{2}\)  là nghiệm của phương trình \(\left( {x - 3} \right)\left( {2x + 1} \right) = 0\).

Ý 3:

Khi \(x = x_0^{}\) là nghiệm của phương trình \(\left( {x - 3} \right)\left( {2x + 1} \right) = 0\)  thì \(x = x_0^{}\) có là nghiệm của phương trình \(x - 3 = 0\) hoặc phương trình \(2x + 1 = 0\).


LT1

Trả lời câu hỏi Luyện tập 1 trang 6 SGK Toán 9 Cánh diều

Giải phương trình: \(\left( {4x + 5} \right)\left( {3x - 2} \right) = 0\).

Phương pháp giải:

+ Giải hai phương trình bậc nhất.

+ Kết luận phương trình.

Lời giải chi tiết:

Để giải phương trình trên ta giải hai phương trình sau:

*)\(4x + 5 = 0\)                                                      

\(x =  - \frac{5}{4}\);

*)\(3x - 2 = 0\)

\(x = \frac{2}{3}\).

Vậy phương trình đã cho có hai nghiệm là \(x =  - \frac{5}{4}\) và \(x = \frac{2}{3}\).


LT2

Trả lời câu hỏi Luyện tập 2 trang 7 SGK Toán 9 Cánh diều

Giải các phương trình:

a. \({x^2} - 10x + 25 = 5\left( {x - 5} \right)\);

b. \(4{x^2} - 16 = 5\left( {x + 2} \right)\).

Phương pháp giải:

+ Chuyển phương trình về phương trình tích.

+ Giải các phương trình trong tích.

+ Kết luận nghiệm.

Lời giải chi tiết:

a. \({x^2} - 10x + 25 = 5\left( {x - 5} \right)\)

Ta có: \({x^2} - 10x + 25 = 5\left( {x - 5} \right)\)

\(\begin{array}{l}{\left( {x - 5} \right)^2} = 5\left( {x - 5} \right)\\{\left( {x - 5} \right)^2} - 5\left( {x - 5} \right) = 0\\\left( {x - 5} \right)\left( {x - 5 - 5} \right) = 0\end{array}\)

\(\left( {x - 5} \right)\left( {x - 10} \right) = 0.\)

Để giải phương trình trên, ta giải hai phương trình sau:

*) \(x - 5 = 0\)  

    \(x = 5;\)  

*) \(x - 10 = 0\)

\(x = 10.\)   

Vậy phương trình đã cho có hai nghiệm là \(x = 5\) và \(x = 10\).

b. \(4{x^2} - 16 = 5\left( {x + 2} \right)\)

Ta có: \(4{x^2} - 16 = 5\left( {x + 2} \right)\)

\( 4 \left( x^2 - 4 \right) - 5 \left( x +2 \right) = 0\)

\(4 \left( x - 2 \right) \left( x +2 \right) - 5 \left( x +2 \right) = 0\)

\(\left( x +2 \right) \left[ 4(x-2) -5 \right]=0\)

\((x+2)(4x-13) = 0\)

Để giải phương trình trên, ta giải hai phương trình sau:

*) \(x +2 = 0\)  

    \(x=-2;\)  

*) \(4x-13= 0\)

\(x = \frac{13}{4}.\)   

Vậy phương trình đã cho có hai nghiệm là \(x = -2\) và \(x = \frac{13}{4}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"