Giải bài tập 2 trang 25 SGK Toán 9 tập 1 - Cánh diều

2024-09-14 18:25:06

Đề bài

Giải hệ phương trình sau bằng phương pháp cộng đại số:

a. \(\left\{ \begin{array}{l}2x + y = 4\\x - y = 2\end{array} \right.\);

b. \(\left\{ \begin{array}{l}4x + 5y = 11\\2x - 3y = 0\end{array} \right.\);

c. \(\left\{ \begin{array}{l}12x + 18y =  - 24\\ - 2x - 3y = 4\end{array} \right.\);

d. \(\left\{ \begin{array}{l}x - 3y = 5\\ - 2x + 6y = 10\end{array} \right.\).

Phương pháp giải - Xem chi tiết

+ Làm cho hai hệ số của một ẩn nào đó bằng nhau hoặc đối nhau;

+ Đưa về phương trình một ẩn;

+ Tìm ẩn còn lại và kết luận.

Lời giải chi tiết

a. \(\left\{ \begin{array}{l}2x + y = 4\,\,\,\,\left( 1 \right)\\x - y = 2\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Cộng từng vế hai phương trình (1) và (2), ta nhận được phương trình:

\(3x = 6\), tức là \(x = 2\)

Thế \(x = 2\) vào phương trình (2), ta nhận được phương trình: \(2 - y = 2\)   (3)

Giải phương trình (3), ta có: \(y = 0\).

Vậy hệ phương trình đã cho có nghiệm \(\left( {x;y} \right) = \left( {2;0} \right)\).

b. \(\left\{ \begin{array}{l}4x + 5y = 11\,\,\,\left( 1 \right)\\2x - 3y = 0\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Nhân hai vế của phương trình (2) với 2 và giữ nguyên phương trình (1), ta được hệ phương trình sau: \(\left\{ \begin{array}{l}4x + 5y = 11\,\,\,\,\,\,\left( 3 \right)\\4x - 6y = 0\,\,\,\,\,\,\,\,\left( 4 \right)\end{array} \right.\)

Trừ từng vế hai phương trình (3) và (4), ta nhận được phương trình: \(11y = 11\) (5)

Giải phương trình (5), ta có:

\(\begin{array}{l}11y = 11\\\,\,\,\,\,y = 1\end{array}\)

Thế giá trị \(y = 1\) vào phương trình (2), ta được phương trình: \(2x - 3.1 = 0\)  (6)

Giải phương trình (6):

\(\begin{array}{l}2x - 3.1 = 0\\\,\,\,\,\,\,\,\,\,\,\,2x = 3\\\,\,\,\,\,\,\,\,\,\,\,\,\,x = \frac{3}{2}\end{array}\)

Vậy hệ phương trình đã cho có nghiệm \(\left( {x;y} \right) = \left( {\frac{3}{2};1} \right)\).

c. \(\left\{ \begin{array}{l}12x + 18y =  - 24\,\,\,\left( 1 \right)\\ - 2x - 3y = 4\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Chia hai vế của phương trình (1) với \( - 6\) và giữ nguyên phương trình (2), ta được hệ phương trình sau: \(\left\{ \begin{array}{l} - 2x - 3y = 4\,\,\,\left( 3 \right)\\ - 2x - 3y = 4\,\,\,\left( 4 \right)\end{array} \right.\)

Trừ từng vế của phương trình (3) và (4), ta nhận được phương trình: \(0x + 0y = 0\) (5)

Do đó phương trình (5) có vô số nghiệm.

Vậy hệ phương trình đã cho có vô số nghiệm.

d. \(\left\{ \begin{array}{l}x - 3y = 5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 2x + 6y = 10\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\,\)

Chia hai vế của phương trình (2) với \( - 2\) và giữ nguyên phương trình (1), ta được hệ phương trình sau: \(\left\{ \begin{array}{l}x - 3y = 5\,\,\,\,\,\,\left( 3 \right)\\x - 3y =  - 5\,\,\,\left( 4 \right)\end{array} \right.\)

Trừ từng vế của phương trình (3) và (4), ta nhận được phương trình: \(0y = 10\)   (5)

Do đó phương trình (5) vô nghiệm.

Vậy hệ phương trình đã cho vô nghiệm.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"