Đề bài
Một nhóm công nhân cần phải cắt cỏ ở một số mặt sân cỏ. Nếu nhóm công nhân đó sử dụng 3 máy cắt cỏ ngồi lái và 2 máy cắt cỏ đẩy tay trong 10 phút thì cắt được \(2990{m^2}\) cỏ. Nếu nhóm công nhân đó sử dụng 4 máy cắt cỏ ngồi lái và 3 máy cắt cỏ đẩy tay trong 10 phút thì cắt được \(4060{m^2}\) cỏ. Hỏi trong 10 phút, mỗi loại máy trên sẽ cắt được bao nhiêu mét vuông cỏ?
Phương pháp giải - Xem chi tiết
+ Gọi ẩn \(x,y\). Tìm đơn vị và điều kiện của \(x,y\).
+ Biểu diễn các đại lượng qua \(x,y\).
+ Viết hệ phương trình.
+ Giải hệ phương trình.
+ Kết luận bài toán.
Lời giải chi tiết
Gọi số mét vuông cỏ loại máy cắt cỏ ngồi lái cắt được trong 10 phút là \(x\,\left( {{m^2};x > 0} \right)\)
Gọi số mét vuông cỏ loại máy cắt cỏ đẩy tay cắt được trong 10 phút là \(y\,\left( {{m^2};y > 0} \right)\)
Do trong 10 phút, công nhân sử dụng 3 máy cắt cỏ ngồi lái và 2 máy cắt cỏ đẩy tay thì cắt được \(2990{m^2}\) nên ta có phương trình: \(3x + 2y = 2990\) (1)
Do trong 10 phút, công nhân sử dụng 4 máy cắt cỏ ngồi lái và 3 máy cắt cỏ đẩy tay thì cắt được \(4060{m^2}\) nên ta có phương trình: \(4x + 3y = 4060\) (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}3x + 2y = 2990\\4x + 3y = 4060\end{array} \right.\)
Nhân phương trình (1) với 4 và phương trình (2) với 3 ta được hệ phương trình sau:
\(\left\{ \begin{array}{l}12x + 8y = 11960\,\,\,\,\left( 3 \right)\\12x + 9y = 12180\,\,\,\,\left( 4 \right)\end{array} \right.\)
Ta giải hệ phương trình trên:
Trừ từng vế của phương trình (4) và (3), ta được \(y = 220\)
Thay \(y = 220\) vào phương trình (1) ta được \(3x + 2.220 = 2990\) (5)
Giải phương trình (5): \(x = 850\)
Vậy số mét vuông cỏ loại máy cắt cỏ ngồi lái cắt được trong 10 phút là \(850\left( {{m^2}} \right)\)
số mét vuông cỏ loại máy cắt cỏ đẩy tay cắt được trong 10 phút là \(220\left( {{m^2}} \right)\).