Giải bài tập 2 trang 34 SGK Toán 9 tập 1 - Cánh diều

2024-09-14 18:25:16

Đề bài

Chứng minh:

a. \(2m + 4 > 2n + 3\) với \(m > n\);

b. \(-3a + 5 > -3b + 5\) với \(a < b\).

Phương pháp giải - Xem chi tiết

Sử dụng tính chất bắc cầu để chứng minh

Lời giải chi tiết

a. Ta có: \(m > n\) nên \(2m > 2n\) suy ra \(2m + 3 > 2n + 3\).

Mà \(2m + 4 > 2m + 3\) nên \(2m + 4 > 2n + 3\).

Vậy \(2m + 4 > 2n + 3\) với \(m > n\).

b. Ta có: \(a < b\) nên \(-3a > -3b\)

Suy ra \(-3a + 5 > -3b + 5\)

Vậy \(-3a + 5 > -3b + 5\) với \(a < b\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"