Giải bài tập 2 trang 34 SGK Toán 9 tập 1 - Cánh diều

2024-09-14 18:25:16

Đề bài

Chứng minh:

a. \(2m + 4 > 2n + 3\) với \(m > n\);

b. \(-3a + 5 > -3b + 5\) với \(a < b\).

Phương pháp giải - Xem chi tiết

Sử dụng tính chất bắc cầu để chứng minh

Lời giải chi tiết

a. Ta có: \(m > n\) nên \(2m > 2n\) suy ra \(2m + 3 > 2n + 3\).

Mà \(2m + 4 > 2m + 3\) nên \(2m + 4 > 2n + 3\).

Vậy \(2m + 4 > 2n + 3\) với \(m > n\).

b. Ta có: \(a < b\) nên \(-3a > -3b\)

Suy ra \(-3a + 5 > -3b + 5\)

Vậy \(-3a + 5 > -3b + 5\) với \(a < b\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"