Đề bài
Chứng minh:
a. \(2m + 4 > 2n + 3\) với \(m > n\);
b. \(-3a + 5 > -3b + 5\) với \(a < b\).
Phương pháp giải - Xem chi tiết
Sử dụng tính chất bắc cầu để chứng minh
Lời giải chi tiết
a. Ta có: \(m > n\) nên \(2m > 2n\) suy ra \(2m + 3 > 2n + 3\).
Mà \(2m + 4 > 2m + 3\) nên \(2m + 4 > 2n + 3\).
Vậy \(2m + 4 > 2n + 3\) với \(m > n\).
b. Ta có: \(a < b\) nên \(-3a > -3b\)
Suy ra \(-3a + 5 > -3b + 5\)
Vậy \(-3a + 5 > -3b + 5\) với \(a < b\).