Giải bài tập 1 trang 65 SGK Toán 9 tập 1 - Cánh diều

2024-09-14 18:25:42

Đề bài

Tính giá trị của mỗi căn thức bậc hai sau:

a. \(\sqrt[{}]{{17 - {x^2}}}\) tại \(x = 1;x =  - 3;x = 2\sqrt[{}]{2}\);

b. \(\sqrt[{}]{{{x^2} + x + 1}}\) tại \(x = 0;x =  - 1;x =  - 7\).

Phương pháp giải - Xem chi tiết

Thay giá trị vào biểu thức để tính.

Lời giải chi tiết

a. Thay \(x = 1\) vào biểu thức, ta được: \(\sqrt {17 - {1^2}}  = \sqrt {17 - 1}  = \sqrt {16}  = 4\).

Thay \(x =  - 3\) vào biểu thức, ta được: \(\sqrt {17 - {{\left( { - 3} \right)}^2}}  = \sqrt {17 - 9}  = \sqrt 8 \).

Thay \(x = 2\sqrt 2 \) vào biểu thức, ta được: \(\sqrt {17 - {{\left( {2\sqrt 2 } \right)}^2}}  = \sqrt {17 - 8}  = \sqrt 9  = 3\).

b. Thay \(x = 0\) vào biểu thức, ta được: \(\sqrt {{0^2} + 0 + 1}  = \sqrt 1  = 1\).

Thay \(x =  - 1\) vào biểu thức, ta được: \(\sqrt {{{\left( { - 1} \right)}^2} + \left( { - 1} \right) + 1}  = \sqrt 1  = 1\).

Thay \(x =  - 7\) vào biểu thức, ta được: \(\sqrt {{{\left( { - 7} \right)}^2} + \left( { - 7} \right) + 1}  = \sqrt {49 - 7 + 1}  = \sqrt {43} \).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"