Đề bài
Rút gọn biểu thức: \(\frac{{\sqrt a }}{{\sqrt a - \sqrt b }} - \frac{{\sqrt b }}{{\sqrt a + \sqrt b }} - \frac{{2b}}{{a - b}}\) với \(a \ge 0,b \ge 0,a \ne b\).
Phương pháp giải - Xem chi tiết
+ Trục căn thức của các phân thức;
+ Dùng phép cộng phân số để rút gọn phân thức.
Lời giải chi tiết
\(\begin{array}{l}\frac{{\sqrt a }}{{\sqrt a - \sqrt b }} - \frac{{\sqrt b }}{{\sqrt a + \sqrt b }} - \frac{{2b}}{{a - b}}\\ = \frac{{\sqrt a \left( {\sqrt a + \sqrt b } \right)}}{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}} - \frac{{\sqrt b \left( {\sqrt a - \sqrt b } \right)}}{{\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt a - \sqrt b } \right)}} - \frac{{2b}}{{a - b}}\\ = \frac{{a + \sqrt {ab} }}{{a - b}} - \frac{{\sqrt {ab} - b}}{{a - b}} - \frac{{2b}}{{a - b}}\\ = \frac{{a + \sqrt {ab} - \sqrt {ab} + b - 2b}}{{a - b}}\\ = \frac{{a - b}}{{a - b}}= 1.\end{array}\)