Giải bài tập 4 trang 71 SGK Toán 9 tập 1 - Cánh diều

2024-09-14 18:25:45

Đề bài

Trục căn thức ở mẫu:

a. \(\frac{9}{{2\sqrt 3 }}\);

b. \(\frac{2}{{\sqrt a }}\) với \(a > 0\);

c. \(\frac{7}{{3 - \sqrt 2 }}\);

d. \(\frac{5}{{\sqrt x  + 3}}\) với \(x > 0;x \ne 9\);

e. \(\frac{{\sqrt 3  - \sqrt 2 }}{{\sqrt 3  + \sqrt 2 }}\);

g. \(\frac{1}{{\sqrt x  - \sqrt 3 }}\) với \(x > 0,x \ne 3\).

Phương pháp giải - Xem chi tiết

+ Tìm biểu thức có thể làm mất căn thức ở dưới mẫu;

+ Nhân cả tử và mẫu với biểu thức vừa tìm được để trục căn thức ở mẫu.

Lời giải chi tiết

a. \(\frac{9}{{2\sqrt 3 }} = \frac{{9\sqrt 3 }}{{2\sqrt 3 .\sqrt 3 }} = \frac{{9\sqrt 3 }}{{2.3}} = \frac{{9\sqrt 3 }}{6} = \frac{{3\sqrt 3 }}{2}\).

b. \(\frac{2}{{\sqrt a }} = \frac{{2\sqrt a }}{{\sqrt a .\sqrt a }} = \frac{{2\sqrt a }}{a}\).

c. \(\frac{7}{{3 - \sqrt 2 }} = \frac{{7\left( {3 + \sqrt 2 } \right)}}{{\left( {3 - \sqrt 2 } \right)\left( {3 + \sqrt 2 } \right)}} = \frac{{7\left( {3 + \sqrt 2 } \right)}}{{9 - 2}} = \frac{{7\left( {3 + \sqrt 2 } \right)}}{7} = 3 + \sqrt 2 \).

d. \(\frac{5}{{\sqrt x  + 3}} = \frac{{5\left( {\sqrt x  - 3} \right)}}{{\left( {\sqrt x  + 3} \right)\left( {\sqrt x  - 3} \right)}} = \frac{{5\left( {\sqrt x  - 3} \right)}}{{x - 9}}\).

e. \(\frac{{\sqrt 3  - \sqrt 2 }}{{\sqrt 3  + \sqrt 2 }} = \frac{{\left( {\sqrt 3  - \sqrt 2 } \right)\left( {\sqrt 3  - \sqrt 2 } \right)}}{{\left( {\sqrt 3  + \sqrt 2 } \right)\left( {\sqrt 3  - \sqrt 2 } \right)}} = \frac{{3 - 2\sqrt 6  + 2}}{{3 - 2}} = 5 - 2\sqrt 6 \).

g. \(\frac{1}{{\sqrt x  - \sqrt 3 }} = \frac{{1\left( {\sqrt x  + \sqrt 3 } \right)}}{{\left( {\sqrt x  - \sqrt 3 } \right)\left( {\sqrt x  + \sqrt 3 } \right)}} = \frac{{\sqrt x  + \sqrt 3 }}{{x - 3}}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"