Đề bài
So sánh:
a. \(2\sqrt 3 \) và \(3\sqrt 2 \);
b. \(7\sqrt {\frac{3}{7}} \) và \(\sqrt 2 .\sqrt {11} \);
c. \(\frac{2}{{\sqrt 5 }}\) và \(\frac{6}{{\sqrt {10} }}\).
Phương pháp giải - Xem chi tiết
+ Bình phương các số;
+ So sánh các bình phương;
+ Kết luận bài toán.
Lời giải chi tiết
a. Ta có: \(2\sqrt 3 = \sqrt {12} ;\,\,3\sqrt 2 = \sqrt {18} \).
Do \(12 < 18\) nên \(\sqrt {12} < \sqrt {18} \) hay \(2\sqrt 3 < 3\sqrt 2 \).
b. Ta có: \(7\sqrt {\frac{3}{7}} = \sqrt {21} ;\sqrt 2 .\sqrt {11} = \sqrt {22} \).
Do \(21 < 22\) nên \(\sqrt {21} < \sqrt {22} \) hay \(7\sqrt {\frac{3}{7}} < \sqrt 2 .\sqrt {11} \).
c. Ta có: \(\frac{2}{{\sqrt 5 }} = \frac{{\sqrt 4 }}{{\sqrt 5 }} = \sqrt {\frac{4}{5}} ;\frac{6}{{\sqrt {10} }} = \frac{{\sqrt {36} }}{{\sqrt {10} }} = \sqrt {\frac{{36}}{{10}}} = \sqrt {\frac{{18}}{5}} \).
Do \(\frac{4}{5} < \frac{{18}}{5}\) nên \(\sqrt {\frac{4}{5}} < \sqrt {\frac{{18}}{5}} \) hay \(\frac{2}{{\sqrt 5 }} < \frac{6}{{\sqrt {10} }}\).