Giải bài tập 3 trang 72 SGK Toán 9 tập 1 - Cánh diều

2024-09-14 18:25:50

Đề bài

Rút gọn biểu thức:

a. \(A = \sqrt {40_{}^2 - 24_{}^2} \);

b. \(B = \left( {\sqrt {12}  + 2\sqrt 3  - \sqrt {27} } \right).\sqrt 3 \);

c. \(C = \frac{{\sqrt {63_{}^3 + 1} }}{{\sqrt {63_{}^2 - 62} }}\);

d. \(D = \sqrt {60}  - 5\sqrt {\frac{3}{5}}  - 3\sqrt {\frac{5}{3}} \).

Phương pháp giải - Xem chi tiết

Áp dụng các kiến thức về căn bậc hai của một thương, căn bâc hai của một tích, đưa thừa số vào trong căn bậc hai và đưa thừa số ra ngoài căn bậc hai để giải bài toán.

Lời giải chi tiết

a. \(A = \sqrt {40_{}^2 - 24_{}^2} \)

\(\begin{array}{l} = \sqrt {\left( {40 - 24} \right)\left( {40 + 24} \right)} \\ = \sqrt {16.64}  = \sqrt {16} .\sqrt {64} \\ = 4.8 = 32\end{array}\)

b. \(B = \left( {\sqrt {12}  + 2\sqrt 3  - \sqrt {27} } \right).\sqrt 3 \)

\(\begin{array}{l} = \left( {2\sqrt 3  + 2\sqrt 3  - 3\sqrt 3 } \right).\sqrt 3 \\ = \sqrt 3.\sqrt 3 \\ = 3\end{array}\)

c. \(C = \frac{{\sqrt {{{63}^3} + 1} }}{{\sqrt {{{63}^2} - 62} }}\)

\(\begin{array}{l} = \frac{{\sqrt {\left( {63 + 1} \right)\left( {63_{}^2 - 63 + 1} \right)} }}{{\sqrt {63_{}^2 - 62} }}\\ = \frac{{\sqrt {64.\left( {63_{}^2 - 62} \right)} }}{{\sqrt {63_{}^2 - 62} }}\\ = \frac{{\sqrt {64} .\sqrt {63_{}^2 - 62} }}{{\sqrt {63_{}^2 - 62} }}\\ = \sqrt {64} \\ = 8\end{array}\)

d. \(D = \sqrt {60}  - 5\sqrt {\frac{3}{5}}  - 3\sqrt {\frac{5}{3}} \)

\(\begin{array}{l} = \sqrt {4.15}  - \sqrt {5^2.\frac{3}{5}}  - \sqrt {3^2.\frac{5}{3}}\\ = 2\sqrt {15}- \sqrt {15} - \sqrt {15}\\ = 0\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"