Giải bài tập 7 trang 81 SGK Toán 9 tập 1 - Cánh diều

2024-09-14 18:25:53

Đề bài

Cho góc nhọn \(\alpha \). Biết rằng, tam giác \(ABC\) vuông tại \(A\) sao cho \(\widehat B = \alpha \).

a) Biểu diễn các tỉ số lượng giác của góc nhọn \(\alpha \) theo \(AB,BC,CA\).

b) Chứng minh: \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\); \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}\); \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }}\); \(\tan \alpha .\cot \alpha  = 1\).

Từ đó, tính giá trị biểu thức: \(S = {\sin ^2}35^\circ  + {\cos ^2}35^\circ \); \(T = \tan 61^\circ .\cot 61^\circ \).

Phương pháp giải - Xem chi tiết

Dựa vào định nghĩa tỉ số lượng giác để làm bài toán.

Lời giải chi tiết

a) \(\sin \alpha  = \frac{{AC}}{{BC}}\); \(\cos \alpha  = \frac{{AB}}{{BC}}\); \(\tan \alpha  = \frac{{AC}}{{AB}}\); \(\cot \alpha  = \frac{{AB}}{{AC}}\).

b) Ta có:

\({\sin ^2}\alpha  + {\cos ^2}\alpha  = {\left( {\frac{{AC}}{{BC}}} \right)^2} + {\left( {\frac{{AB}}{{BC}}} \right)^2} = \frac{{A{C^2} + A{B^2}}}{{B{C^2}}} = \frac{{B{C^2}}}{{B{C^2}}} = 1\).

\(\frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{AC}}{{BC}}:\frac{{AB}}{{BC}} = \frac{{AC}}{{BC}}.\frac{{BC}}{{AB}} = \frac{{AC}}{{AB}} = \tan \alpha \).

\(\frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{AB}}{{BC}}:\frac{{AC}}{{BC}} = \frac{{AB}}{{BC}}.\frac{{BC}}{{AC}} = \frac{{AB}}{{AC}} = \cot \alpha \).

\(\tan \alpha .\cot \alpha  = \frac{{AC}}{{AB}}.\frac{{AB}}{{AC}} = 1\).

\(S = {\sin ^2}35^\circ  + {\cos ^2}35^\circ  = 1\).

\(T = \tan 61^\circ .\cot 61^\circ  = 1\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"