Giải bài tập 1 trang 81 SGK Toán 9 tập 1 - Cánh diều

2024-09-14 18:25:56

Đề bài

Cho tam giác \(ABC\) vuông tại \(A\) có \(AC = 4cm,BC = 6cm\). Tính các tỉ số lượng giác của góc \(B\).

Phương pháp giải - Xem chi tiết

Dựa vào định nghĩa tỉ số lượng giác để giải bài toán.

Lời giải chi tiết

Xét tam giác \(ABC\) vuông tại \(A\) có:

\(A{B^2} + A{C^2} = B{C^2} \\ A{B^2} + {4^2} = {6^2}\\AB = 2\sqrt 5\left( {cm} \right)\)

\(\sin B = \frac{{AC}}{{BC}} = \frac{4}{6} = \frac{2}{3}\).

\(\cos B = \frac{{AB}}{{BC}} = \frac{2\sqrt 5}{6} = \frac{\sqrt 5}{3} \).

\(\tan B = \frac{{AC}}{{AB}} = \frac{4}{2\sqrt 5}= \frac{2}{\sqrt 5}= \frac{2\sqrt 5}{5}\).

\(\cot B = \frac{{AB}}{{AC}} = \frac{2\sqrt 5}{4}= \frac{\sqrt 5}{2}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"