Giải bài tập 7 trang 100 SGK Toán 9 tập 1 - Cánh diều

2024-09-14 18:26:27

Đề bài

Cho hai đường tròn cùng tâm \(\left( {O;R} \right),\left( {O;r} \right)\) với \(R > r\). Các điểm \(A,B\) thuộc đường tròn \(\left( {O;R} \right)\), các điểm \(A',B'\) thuộc đường tròn \(\left( {O;r} \right)\) sao cho \(O,A,A'\) thẳng hàng; \(O,B,B'\) thẳng hàng và điểm \(O\) không thuộc đường thẳng \(AB\). Chứng minh:

a) \(\frac{{OA'}}{{OA}} = \frac{{OB'}}{{OB}}\).

b) \(AB//A'B'\).

Phương pháp giải - Xem chi tiết

Dựa vào các kiến thức đã học để giải bài toán.

Lời giải chi tiết

a) Do các điểm \(A,B\) thuộc đường tròn \(\left( {O;R} \right)\) nên \(OA = OB = R\).

Do các điểm \(A',B'\) thuộc đường tròn \(\left( {O;r} \right)\) nên \(OA' = OB' = r\).

Ta có: \(\frac{{OA'}}{{OA}} = \frac{r}{R};\frac{{OB'}}{{OB}} = \frac{r}{R}\).

Vậy \(\frac{{OA'}}{{OA}} = \frac{{OB'}}{{OB}}\).

b) Xét tam giác \(OAB\) có: \(\frac{{OA'}}{{OA}} = \frac{{OB'}}{{OB}}\)

Nên \(AB//A'B'\) (Định lí Thalet đảo).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"