Giải bài tập 3 trang 117 SGK Toán 9 tập 1 - Cánh diều

2024-09-14 18:27:08

Đề bài

Trong Hình 63, cho biết \(AB = OA\).

a) Tính số đo góc \(AOB\).

b) Tính số đo cung nhỏ \(AB\) và cung lớn \(AB\) của \(\left( O \right)\).

c) Tính số đo góc \(MIN\).

d) Tính số đo cung nhỏ \(MN\) và cung lớn \(MN\) của \(\left( I \right)\).

e) Tính số đo góc \(MKN\).

Phương pháp giải - Xem chi tiết

Dựa vào tính chất số đo góc ở tâm và số đo góc nội tiếp để chứng minh.

Lời giải chi tiết

a) Xét tam giác \(OAB\) có: \(OA = OB = AB = R\) nên tam giác \(OAB\) đều.

Vậy \(\widehat {AOB} = 60^\circ \).

b) Xét đường tròn \(\left( O \right)\) có:

+ \(\widehat {AOB}\) là góc ở tâm chắn cung \(AB\) nên $\widehat{AOB}=sđ\overset\frown{AB}=60{}^\circ $

+ $sđ\overset\frown{A{{B}_{lớn}}}=360{}^\circ -sđ\overset\frown{A{{B}_{nhỏ}}}=360{}^\circ -60{}^\circ =300{}^\circ $

c) Xét đường tròn \(\left( O \right)\) có:

+ \(\widehat {MIN}\) là góc nội tiếp chắn cung \(AB\) nên $\widehat{MIN}=\frac{1}{2}sđ\overset\frown{AB}=30{}^\circ $

d) Xét đường tròn \(\left( I \right)\) có:

+ \(\widehat {MIN}\) là góc ở tâm chắn cung \(MN\) nên $\widehat{MIN}=sđ\overset\frown{MN}=30{}^\circ $

+ $sđ\overset\frown{M{{N}_{lớn}}}=360{}^\circ -sđ\overset\frown{M{{N}_{nhỏ}}}=360{}^\circ -30{}^\circ =330{}^\circ $

e) Xét đường tròn \(\left( I \right)\) có:

+ \(\widehat {MKN}\) là góc nội tiếp chắn cung \(MN\) nên $\widehat{MKN}=\frac{1}{2}sđ\overset\frown{MN}=15{}^\circ $

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"