Giải bài tập 1 trang 124 SGK Toán 9 tập 1 - Cánh diều

2024-09-14 18:27:38

Đề bài

Trong Hình 92, cho các điểm \(A,B,C,D,E\) thuộc đường tròn \(\left( O \right)\).

a) Số đo góc \(BOC\) là:

A. \(\alpha \)

B. \(2\alpha \)

C. \(180^\circ  - \alpha \)

B. \(180^\circ  - 2\alpha \)

b) Số đo góc \(BDC\) là:

A. \(\alpha \)

B. \(\frac{\alpha }{2}\)

C. \(180^\circ  - \alpha \)

D. \(180^\circ  - \frac{\alpha }{2}\)

c) Số đo góc \(BEC\) là:

A. \(\alpha \)

B. \(2\alpha \)

C. \(180^\circ  - \alpha \)

D. \(360^\circ  - \alpha \)

Phương pháp giải - Xem chi tiết

Dựa vào mối liên hệ giữa góc nội tiếp đường tròn và góc ở tâm để tính.

Lời giải chi tiết

a) Do \(\widehat {BOC}\) là góc ở tâm chắn cung $\overset\frown{BC}$, \(\widehat {BAC}\) là góc nội tiếp chắn cung $\overset\frown{BC}$ nên \(\widehat {BOC} = 2\widehat {BAC} = 2\alpha \).

Chọn đáp án B.

b) Do \(\widehat {BDC}\) là góc nội tiếp chắn cung $\overset\frown{BC}$, \(\widehat {BAC}\) là góc nội tiếp chắn cung $\overset\frown{BC}$ nên \(\widehat {BAC} = \widehat {BDC} = \alpha \).

Chọn đáp án A.

c) Do \(\widehat {BEC}\) là góc nội tiếp chắn cung lớn $\overset\frown{BC}$, \(\widehat {BAC}\) là góc nội tiếp chắn cung nhỏ $\overset\frown{BC}$ nên \(\widehat {BEC} = \frac{1}{2}\left( {360^\circ  - 2\alpha } \right) = 180^\circ  - \alpha \).

Chọn đáp án C.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"