Giải bài tập 8 trang 67 SGK Toán 9 tập 2 - Cánh diều

2024-09-14 18:29:00

Đề bài

Giải thích vì sao nếu phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm \({x_1},{x_2}\) thì \(a{x^2} + bx + c = a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\).

Áp dụng phân tích các đa thức sau thành nhân tử:

a)    \({x^2} - 2x - 3\)

b)   \(3{x^2} + 5x - 2\)

Phương pháp giải - Xem chi tiết

Bước 1: Biến đổi vế trái để xuất hiện tổng và tích của \({x_1},{x_2}\).

Bước 2: Thay hệ thức Viète vào biểu thức vừa biến đổi.

Lời giải chi tiết

Do phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm \({x_1},{x_2}\) nên áp dụng định lý Viète, ta có:

\({x_1} + {x_2} = \frac{{ - b}}{a};{x_1}.{x_2} = \frac{c}{a}\)

Ta lại có:

\(\begin{array}{l}VT = a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) = a\left( {{x^2} - x.{x_2} - x.{x_1} + {x_1}.{x_2}} \right)\\ = a\left[ {{x^2} - x\left( {{x_1} + {x_2}} \right) + {x_1}.{x_2}} \right]\\ = a\left[ {{x^2} - x.\frac{{ - b}}{a} + \frac{c}{a}} \right]\\ = a\left( {{x^2} + \frac{b}{a}x + \frac{c}{a}} \right)\\ = a{x^2} + bx + c\\ = VP(dpcm)\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"