Giải bài tập 5 trang 66 SGK Toán 9 tập 2 - Cánh diều

2024-09-14 18:29:01

Đề bài

Giải các phương trình:

a)   \(3{x^2} - 2x - 4 = 0\)

b)  \(9{x^2} - 24x + 16 = 0\)

c)   \(2{x^2} + x + \sqrt 2  = 0\)

Phương pháp giải - Xem chi tiết

Kiểm tra xem có phải trường hợp đặc biệt của hệ số (nhẩm nghiệm) hay không. Nếu không thì áp dụng công thức tính nghiệm để giải phương trình.

Lời giải chi tiết

a)   Phương trình có các hệ số: \(a = 3;b =  - 2;c =  - 4.\) Do \(b =  - 2\) nên \(b' =  - 1.\)

\(\Delta ' = {( - 1)^2} - 3.( - 4) = 13 > 0\)

Phương trình có 2 nghiệm phân biệt là:

\({x_1} = \frac{{ - \left( { - 1} \right) + \sqrt {13} }}{3} = \frac{{1 + \sqrt {13} }}{3};{x_2} = \frac{{ - \left( { - 1} \right) - \sqrt {13} }}{3} = \frac{{1 - \sqrt {13} }}{3}.\)

b)  Phương trình có các hệ số: \(a = 9;b =  - 24;c = 16.\) Do \(b =  - 24\) nên \(b' =  - 12.\)

\(\Delta ' = {( - 12)^2} - 9.16 = 0\)

Phương trình có nghiệm kép  \({x_1} = {x_2} = \frac{{ - \left( { - 24} \right)}}{9} = \frac{8}{3}.\)

c)   Phương trình có các hệ số: \(a = 2;b = 1;c = \sqrt 2 .\)

\(\Delta ' = {1^2} - 4.2.\sqrt 2  = 1 - 8\sqrt 2  < 0\)

Vậy phương trình vô nghiệm.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"