Giải bài tập 4 trang 66 SGK Toán 9 tập 2 - Cánh diều

2024-09-14 18:29:02

Đề bài

Trên mặt phẳng tọa độ Oxy, đường parabol ở Hình 10 biểu diễn đồ thị của hàm số \(y = a{x^2}\).

a) Tìm hệ số a.

b) Tìm điểm thuộc đồ thị hàm số có hoành độ bằng 3.

c) Tìm điểm thuộc đồ thị hàm số có tung độ bằng 4.

Phương pháp giải - Xem chi tiết

a)   Thay tọa độ điểm \(\left( {2;\frac{{16}}{3}} \right)\) vào \(y = a{x^2}\) để tìm a.

b)  Điểm thuộc đồ thị hàm số có hoành độ bằng 3 nên \(x = 3.\)

c)   Điểm thuộc đồ thị hàm số có tung độ bằng 4 nên \(y = 4.\)

Lời giải chi tiết

a) Vì điểm \(\left( {2;\frac{{16}}{3}} \right)\) thuộc đồ thị hàm số, nên thay \(x = 2;y = \frac{{16}}{3}\) vào \(y = a{x^2}\), ta được:

\(\begin{array}{l}\frac{{16}}{3} = a{.2^2}\\a = \frac{4}{3}\end{array}\)

Vậy \(a = \frac{4}{3}\)

b) Với \(a = \frac{4}{3}\) hàm số trở thành \(y = \frac{4}{3}{x^2}.\)

Điểm thuộc đồ thị hàm số có hoành độ bằng 3 nên \(x = 3,\) ta có:

\(\begin{array}{l}y = \frac{4}{3}{x^2}\\y = \frac{4}{3}{.3^2} = 12.\end{array}\)

Vậy điểm cần tìm là \(\left( {3;12} \right)\).

c) Điểm thuộc đồ thị hàm số có tung độ bằng 4 nên \(y = 4.\) Ta có:

\(\begin{array}{l}y = \frac{4}{3}{x^2}\\4 = \frac{4}{3}{x^2}\end{array}\)

\(x =  \pm \sqrt 3 \)

Vậy điểm cần tìm là \(\left( {\sqrt 3 ;4} \right),\left( { - \sqrt 3 ;4} \right).\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"