Giải bài tập 5 trang 74 SGK Toán 9 tập 2 - Cánh diều

2024-09-14 18:29:06

Đề bài

Cho tam giác nhọn ABC (AB

a) \(BD \bot AB,CD \bot AC.\)

b) Tứ giác BHCD là hình bình hành.

c) \(A{C^2} + B{H^2} = 4{R^2}.\)

d) Ba điểm H, M, D thẳng hàng và AH = 2OM.

Phương pháp giải - Xem chi tiết

a) Dựa vào định lý: Trong một tam giác có đường trung tuyến ứng với một cạnh và bằng nửa cạnh ấy thì tam giác đó vuông.

b) Chứng minh BH//CD, HC//BD thông qua mối quan hệ từ vuông góc đến song song.

c) Áp dụng định lý Pytago trong tam giác vuông ACD.

d) H, M, D thẳng hàng: Chỉ ra M là giao điểm của 2 đường chéo trong hình bình hành BHCD.

AH = 2OM: Chứng minh OM là đường trung bình của tam giác AHD. 

Lời giải chi tiết

a)     Chứng minh: \(BD \bot AB\)

Vì tam giác ABD nội tiếp đường tròn (O) nên AO = OB = OD Mà AD là đường kính của (O) suy ra \(OA = OD = \frac{{AD}}{2}.\)

Do đó \(OB = OA = OD = \frac{{AD}}{2}.\)

Xét tam giác ABD có đường trung tuyến BO và \(OB = \frac{{AD}}{2}\) nên tam giác ABD vuông tại B, suy ra \(BD \bot AB\)

Chứng minh: \(CD \bot AC.\)

Vì tam giác ACD nội tiếp đường tròn (O) nên AO = OC = OD Mà AD là đường kính của (O) suy ra \(OA = OD = \frac{{AD}}{2}.\)

Do đó \(OC = OA = OD = \frac{{AD}}{2}.\)

Xét tam giác ACD có đường trung tuyến CO và \(OC = \frac{{AD}}{2}\) nên tam giác ACD vuông tại C, suy ra \(CD \bot AC.\)

b)    Ta có: H là trực tâm của tam giác ABC nên \(BH \bot AC\),\(CH \bot AB\)

Ta lại có:

\(BH \bot AC\), \(CD \bot AC\)(câu a) nên BH // DC.

\(CH \bot AB\), \(BD \bot AB\) (câu a) nên CH // BD.

Xét BHCD có: BH // DC, CH // BD (cmt) suy ra BHCD là hình bình hành (dhnb).

c)     Do BHCD là hình bình hành nên BH = CD.

Xét tam giác ADC vuông tại C có: \(A{C^2} + C{D^2} = A{D^2}\), mà BH = CD, AD = 2R nên:

\(A{C^2} + B{H^2} = 4{R^2}\).

d)    Do BHCD là hình bình hành, M là trung điểm của đường chéo BC nên M cũng là trung điểm của đường chéo HD. Hay H, M, D thẳng hàng.

Xét tam giác AHD có: M là trung điểm của HD (cmt), O là trung điểm của AD nên OM là đường trung bình, suy ra \(OM = \frac{1}{2}AH\) hay \(AH = 2OM.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"