Giải bài tập 3 trang 74 SGK Toán 9 tập 2 - Cánh diều

2024-09-14 18:29:08

Đề bài

Cho bán kính đường tròn nội tiếp tam giác đều bằng 4cm. Tính cạnh của tam giác đều đó.

Phương pháp giải - Xem chi tiết

Bước 1: Áp dụng tính chất đường trung tuyến của tam giác để tính EI.

Bước 2: Biểu diễn FI theo FG và EF.

Bước 3: Áp dụng định lý Pytago trong tam giác EFI để tính cạnh EF.

Lời giải chi tiết

Gọi (O; OI) là đường tròn nội tiếp tam giác đều EFG nên O là giao của đường trung trực EI, FH; và OI = 4cm.

EI là đường trung trực của tam giác đều EFG nên \(FI = \frac{{FG}}{2} = \frac{{EF}}{2}\) và EI đồng thời là đường trung tuyến do đó \(EI = 3OI = 3.4 = 12cm.\)

Áp dụng định lý Pytago trong tam giác EFI vuông tại I:

\(\begin{array}{l}E{F^2} = E{I^2} + F{I^2}\\E{F^2} = {12^2} + {\frac{{EF}}{4}^2}\\\frac{{3E{F^2}}}{4} = 144\\EF = 8\sqrt 3 cm.\end{array}\)

Vậy cạnh của tam giác đều là \(8\sqrt 3 cm.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"