Giải bài tập 7 trang 78 SGK Toán 9 tập 2 - Cánh diều

2024-09-14 18:29:15

Đề bài

Cho tứ giác nội tiếp ABCD có tam giác ABC là tam giác nhọn. Hai đường cao AM, CN của tam giác ABC cắt nhau tại H (Hình 30). Chứng minh:

a) \(\widehat {MHN} + \widehat {ABC} = 180^\circ .\)

b) \(\widehat {AHC} = \widehat {ADC.}\)

c) \(\widehat {ADC} = \widehat {BAM} + 90^\circ .\)

Phương pháp giải - Xem chi tiết

a) Áp dụng tổng 4 góc trong tứ giác HMBN bằng \(180^\circ \)

b) \(\widehat {AHC} = \widehat {ADC}\) vì cùng bù với góc CBA.

c) Chứng minh \(\widehat {BAM} + \widehat {AMB} = \widehat {BAM} + 90^\circ  = 180^\circ  - \widehat {MBA} = \widehat {ADC}.\)

Lời giải chi tiết

a) Do tam giác ABC có hai đường cao AM, CN nên \(\widehat {HMB} = 90^\circ ,\widehat {BNH} = 90^\circ \)

Xét tứ giác HMBN có:

\(\begin{array}{l}\widehat {NHM} + \widehat {HMB} + \widehat {MBN} + \widehat {BNH} = 360^\circ \\\widehat {NHM} + \widehat {MBN} = 360^\circ  - \widehat {HMB} - \widehat {BNH}\\\widehat {NHM} + \widehat {MBN} = 360^\circ  - 90^\circ  - 90^\circ  = 180^\circ .\end{array}\)

Hay \(\widehat {MHN} + \widehat {ABC} = 180^\circ .\)

b) Vì ABCD nội tiếp đường tròn nên  \(\widehat {CDA} + \widehat {ABC} = 180^\circ .\)

mà \(\widehat {MHN} + \widehat {ABC} = 180^\circ \) (câu a)

suy ra \(\widehat {CDA} = \widehat {MHN}\), hơn nữa \(\widehat {CHA} = \widehat {MHN}\) (đối đỉnh)

vậy \(\widehat {CHA} = \widehat {CDA.}\)

c) Xét tam giác AMB vuông tại M có: \(\widehat {BAM} + \widehat {AMB} = \widehat {BAM} + 90^\circ  = 180^\circ  - \widehat {MBA.}\)

Mà \(180^\circ  - \widehat {MBA} = \widehat {ADC}\) (do ABCD nội tiếp)

Vậy \(\widehat {ADC} = \widehat {BAM} + 90^\circ .\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"