Giải bài tập 2 trang 79 SGK Toán 9 tập 2 - Cánh diều

2024-09-14 18:29:25

Đề bài

Cho đường tròn (I) nội tiếp tam giác ABC và lần lượt tiếp xúc với các cạnh BC, CA, AB tại M, N, P. Chứng minh \(\widehat {AIN} = \widehat {PMN} = \frac{1}{2}\widehat {PIN.}\)

Phương pháp giải - Xem chi tiết

Bước 1: Lý thuyết: Góc ở tâm bằng số đo cung bị chắn, góc nội tiếp bằng một nửa số đo cung bị chắn, suy ra \(\widehat {PMN} = \frac{1}{2}\widehat {PIN.}\)

Bước 2: Sử dụng tính chất 2 tiếp tuyến cắt nhau để suy ra \(\widehat {AIN} = \frac{1}{2}\widehat {PIN.}\)

Lời giải chi tiết

Xét (I) có:

\(\widehat {PIN}\) là góc ở tâm chắc cung NP nên \(\widehat {PIN}\)= sđ\(\overset\frown{NP}\).

\(\widehat {PMN}\) là góc nội tiếp chắc cung NP nên \(\widehat {PMN}\) = \(\frac{1}{2}\)sđ\(\overset\frown{NP}\).

Suy ra \(\widehat {PMN} = \frac{1}{2}\widehat {PIN.}\)(1)

Ta lại có: \(IN \bot AC,IP \bot AB\) nên AB, AC là 2 tiếp tuyến của (I) nên IA là tia phân giác của góc PIN, hay \(\widehat {AIN} = \frac{1}{2}\widehat {PIN.}\)(2)

Từ (1) và (2) ta có \(\widehat {AIN} = \widehat {PMN} = \frac{1}{2}\widehat {PIN.}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"