Giải mục 1 trang 2, 3, 4 SGK Toán 9 tập 1 - Cùng khám phá

2024-09-14 18:33:50

HĐ1

Trả lời câu hỏi Hoạt động 1 trang 2 SGK Toán 9 Cùng khám phá

Cho hai số thực a và b.

a. Nếu \(a = 0\) hoặc \(b = 0\) thì tích \(ab\) bằng bao nhiêu?

b. Nếu \(ab = 0\) thì \(a\) và \(b\) có cùng khác 0 được không?

Phương pháp giải:

Dựa vào tính chất của một tích để trả lời câu hỏi.

Lời giải chi tiết:

a. Nếu \(a = 0\), \(0.b = 0\).

Nếu \(b = 0\), \(a.0 = 0\).

Vậy nếu \(a = 0\) hoặc \(b = 0\) thì tích \(ab = 0\).

b. Nếu \(ab = 0\) thì a và b không thể cùng khác 0.


LT1

Trả lời câu hỏi Luyện tập 1 trang 3 SGK Toán 9 Cùng khám phá

Giải các phương trình sau:

a. \(\left( {12 - 4x} \right)\left( {5x + 6} \right) = 0\);

b. \(\left( {4x + 1} \right)_{}^2 - \left( {2x - 3} \right)_{}^2 = 0\).

Phương pháp giải:

+ Đưa phương trình về phương trình tích;

+ Giải các phương trình có trong tích;

+ Kết luận nghiệm cảu phương trình.

Lời giải chi tiết:

a. \(\left( {12 - 4x} \right)\left( {5x + 6} \right) = 0\)

Phương trình \(12 - 4x = 0\) có nghiệm duy nhất \(x = 3\).

Phương trình \(5x + 6 = 0\) có nghiệm duy nhất \(x =  - \frac{6}{5}\).

Vậy phương trình \(\left( {12 - 4x} \right)\left( {5x + 6} \right) = 0\) có hai nghiệm \(x = 3\) và \(x =  - \frac{6}{5}\).

b. \(\left( {4x + 1} \right)_{}^2 - \left( {2x - 3} \right)_{}^2 = 0\)

\(\begin{array}{l}\left( {4x + 1 - 2x + 3} \right)\left( {4x + 2 + 2x - 3} \right) = 0\\\left( {2x + 4} \right)\left( {6x - 1} \right) = 0.\end{array}\)

Phương trình \(2x + 4 = 0\) có nghiệm duy nhất \(x =  - 2\).

Phương trình \(6x - 1 = 0\) có nghiệm duy nhất \(x = \frac{1}{6}\).

Vậy phương trình \(\left( {4x + 1} \right)_{}^2 - \left( {2x - 3} \right)_{}^2 = 0\) có hai nghiệm \(x =  - 2\) và \(x = \frac{1}{6}\).


LT2

Trả lời câu hỏi Luyện tập 2 trang 3 SGK Toán 9 Cùng khám phá

Giải phương trình \(\left( {5x + 8} \right)\left( {6x - 1} \right) = \left( {3x - 4} \right)\left( {6x - 1} \right)\).

Phương pháp giải:

+ Chuyển phương trình về phương trình tích;

+ Giải các phương trình trong tích;

+ Kết luận nghiệm của phương trình.

Lời giải chi tiết:

\(\begin{array}{l}\left( {5x + 8} \right)\left( {6x - 1} \right) = \left( {3x - 4} \right)\left( {6x - 1} \right)\\\left( {5x - 8} \right)\left( {6x - 1} \right) - \left( {3x - 4} \right)\left( {6x - 1} \right) = 0\\\left( {6x - 1} \right)\left[ {\left( {5x - 8} \right) - \left( {3x - 4} \right)} \right] = 0\\\left( {6x - 1} \right)\left( {5x - 8 - 3x + 4} \right) = 0\\\left( {6x - 1} \right)\left( {2x - 4} \right) = 0.\end{array}\)

Phương trình \(6x - 1 = 0\) có nghiệm duy nhất \(x = \frac{1}{6}\).

Phương trình \(2x - 4 = 0\) có nghiệm duy nhất \(x = 2\).

Vậy phương trình \(\left( {5x + 8} \right)\left( {6x - 1} \right) = \left( {3x - 4} \right)\left( {6x - 1} \right)\) có hai nghiệm \(x = \frac{1}{6}\) và \(x = 2\).


VD1

Trả lời câu hỏi Vận dụng 1 trang 4 SGK Toán 9 Cùng khám phá

Trả lời câu hỏi nêu trong phần Khởi động.

Câu hỏi khởi động: Hình bên mô tả một pháo sáng được phóng từ một bè cứu sinh trên biển. Độ cao \(h\left( m \right)\) của pháo sáng so với mặt nước biển được tính bởi công thức \(h = 30,48t - 4,8768{t^2}\), trong đó \(t\left( s \right)\) là thời gian sau khi pháo sáng được bắn. Sau bao lâu pháo sáng rơi xuống biển?

Phương pháp giải:

Áp dụng giải phương trình tích vào bài toán.

Lời giải chi tiết:

Thời gian pháo sáng rơi xuống biển là:

\(\begin{array}{l}30,48t - 4,8768{t^2} = 0\\t\left( {30,48 - 4,8768t} \right) = 0\end{array}\)

Phương trình \(t = 0\) có nghệm duy nhất \(t = 0\).

Phương trình \(30,48 - 4,8768t = 0\) có nghiệm duy nhất \(t = 6,25\).

Vậy sau 6,25s pháo sáng sẽ rơi xuống biển.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"