Đề bài
Phương trình \(\frac{{x + 3}}{{x - 3}} - \frac{{x - 3}}{{x + 3}} = \frac{x}{{{x^2} - 9}}\) có một nghiệm duy nhất là:
A. \(x = - 1\)
B. \(x = 0\)
C. \(x = 1\)
D. \(x = 2\)
Phương pháp giải - Xem chi tiết
Thay giá trị \(x\) vào phương trình để kiểm tra xem nghiệm nào thỏa mãn.
Lời giải chi tiết
+ Thay \(x = - 1\) vào phương trình \(\frac{{x + 3}}{{x - 3}} - \frac{{x - 3}}{{x + 3}} = \frac{x}{{{x^2} - 9}}\) ta được:
\(\begin{array}{l}\frac{{ - 1 + 3}}{{ - 1 - 3}} + \frac{{ - 1 - 3}}{{ - 1 + 3}} = \frac{{ - 1}}{{{{\left( { - 1} \right)}^2} - 9}}\\ - \frac{5}{2} = \frac{1}{8}\left( {VL} \right).\end{array}\)
+ Thay \(x = 0\) vào phương trình \(\frac{{x + 3}}{{x - 3}} - \frac{{x - 3}}{{x + 3}} = \frac{x}{{{x^2} - 9}}\) ta được:
\(\begin{array}{l}\frac{{0 + 3}}{{0 - 3}} - \frac{{0 - 3}}{{0 + 3}} = \frac{0}{{0 - 9}}\\0 = 0.\end{array}\)
Vậy phương trình \(\frac{{x + 3}}{{x - 3}} - \frac{{x - 3}}{{x + 3}} = \frac{x}{{{x^2} - 9}}\) có nghiệm duy nhất là \(x = 0\).
Chọn đáp án B.