Giải bài tập 1.24 trang 24 SGK Toán 9 tập 1 - Cùng khám phá

2024-09-14 18:34:06

Đề bài

Giải các hệ phương trình sau bằng phương pháp cộng hoặc phương pháp thế:

a) \(\left\{ \begin{array}{l}3x + 4y = 8\\2x - 5y =  - 10\end{array} \right.\);

b) \(\left\{ \begin{array}{l}9x - 11y = 6\\3x + y = 4\end{array} \right.\);

c) \(\left\{ \begin{array}{l} - 0,4x + 0,5y =  - 6\\1,2x - 1,8y = 21\end{array} \right.\);

d) \(\left\{ \begin{array}{l}2x - 6y = 14\\ - x + 3y =  - 7\end{array} \right.\).

Phương pháp giải - Xem chi tiết

Dựa vào hai cách giải hệ phương trình để làm bài toán.

Lời giải chi tiết

a) \(\left\{ \begin{array}{l}3x + 4y = 8\\2x - 5y =  - 10\end{array} \right.\).

Nhân hai vế của phương trình thứ nhất với 2 và hai vế của phương trình thứ hai với 3, ta thu được hệ sau: \(\left\{ \begin{array}{l}6x + 8y = 16\\6x - 15y =  - 30\end{array} \right.\).

Trừ từng vế hai phương trình của hệ trên, ta được:

\(\begin{array}{l}\left( {6x + 8y} \right) - \left( {6x - 15y} \right) = 16 - \left( { - 30} \right)\\6x + 8y - 6x + 15y = 46\\23y = 46\\y = 2.\end{array}\)

Thay \(y = 2\) vào phương trình \(3x + 4y = 8\), ta có:

\(\begin{array}{l}3x + 4.2 = 8\\x = 0.\end{array}\)

Vậy hệ đã cho có nghiệm duy nhất là \(\left( {0;2} \right)\).

b) \(\left\{ \begin{array}{l}9x - 11y = 6\\3x + y = 4\end{array} \right.\).

Nhân hai vế của phương trình thứ hai với 3, ta thu được hệ sau:

\(\left\{ \begin{array}{l}9x - 11y = 6\\9x + 3y = 12\end{array} \right.\).

Trừ từng vế hai phương trình của hệ trên, ta được:

\(\begin{array}{l}\left( {9x - 11y} \right) - \left( {9x + 3y} \right) = 6 - 12\\9x - 11y - 9x - 3y =  - 6\\ - 14y =  - 6\\y = \frac{3}{7}.\end{array}\)

Thay \(y = \frac{3}{7}\) vào phương trình \(3x + y = 4\), ta có:

\(\begin{array}{l}3x + \frac{3}{7} = 4\\x = \frac{{25}}{{21}}.\end{array}\)

Vậy hệ đã cho có nghiệm duy nhất là \(\left( {\frac{{25}}{{21}};\frac{3}{7}} \right)\).

c) \(\left\{ \begin{array}{l} - 0,4x + 0,5y =  - 6\\1,2x - 1,8y = 21\end{array} \right.\).

Nhân hai vế của phương trình thứ nhất với 3, ta thu được hệ sau:

\(\left\{ \begin{array}{l} - 1,2x + 1,5y =  - 18\\1,2x - 1,8y = 21\end{array} \right.\).

Cộng từng vế hai phương trình của hệ trên, ta được:

\(\begin{array}{l}\left( { - 1,2x + 1,5y} \right) + \left( {1,2x - 1,8y} \right) =  - 18 + 21\\ - 1,2x + 1,5y + 1,2x - 1,8y = 3\\ - 0,3y = 3\\y =  - 10.\end{array}\)

Thay \(y =  - 10\) vào phương trình \( - 0,4x + 0,5y =  - 6\), ta có:

\(\begin{array}{l} - 0,4x + 0,5.\left( { - 10} \right) =  - 6\\ - 0,4x - 0,5 =  - 6\\x = \frac{5}{2}.\end{array}\)

Vậy hệ đã cho có nghiệm duy nhất \(\left( {\frac{5}{2}; - 10} \right)\).

d) \(\left\{ \begin{array}{l}2x - 6y = 14\\ - x + 3y =  - 7\end{array} \right.\).

Nhân hai vế của phương trình thứ hai với 2, ta thu được hệ sau:

\(\left\{ \begin{array}{l}2x - 6y = 14\\ - 2x + 6y =  - 14\end{array} \right.\).

Cộng từng vế hai phương trình của hệ trên, ta được:

\(\begin{array}{l}\left( {2x - 6y} \right) + \left( { - 2x + 6y} \right) = 14 + \left( { - 14} \right)\\2x - 6y - 2x + 6y = 0\\0y = 0.\end{array}\)

Vậy hệ đã cho có vô số nghiệm \(\left( {x;y} \right)\) với \(\left\{ \begin{array}{l}y \in \mathbb{R}\\x = 3y + 7\end{array} \right.\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"