1. Mở đầu về bất phương trình
Định nghĩa bất phương trình
Cho A(x), B(x) là hai biểu thức của biến x. Khi cần tìm x sao cho A(x) > B(x) (hoặc A(x) < B(x), A(x) \( \ge \) B(x), A(x) \( \le \) B(x)) thì ta nói cho A(x) > B(x) (hoặc A(x) < B(x), A(x) \( \ge \) B(x), A(x) \( \le \) B(x)) là một bất phương trình ẩn x. A(x) và B(x) lần lượt được gọi là vế trái và vế phải của bất phương trình. |
Nghiệm của bất phương trình
Khi thay giá trị \(x = {x_0}\) vào hai vế của một bất phương trình ẩn x mà được một khẳng định đúng thì ta nói \(x = {x_0}\) (hay \({x_0}\)) là một nghiệm của bất phương trình đó. |
Ví dụ:
Số -2 là nghiệm của bất phương trình \(2x - 10 < 0\) vì \(2.\left( { - 2} \right) - 10 = - 4 - 10 = - 14 < 0\).
Số 6 không là nghiệm của bất phương trình \(2x - 10 < 0\) vì \(2.6 - 10 = 12 - 10 = 2 > 0\).
2. Bất phương trình bậc nhất một ẩn
Định nghĩa
Bất phương trình dạng \(ax + b > 0\) (hoặc \(ax + b < 0,ax + b \ge 0,ax + b \le 0\)), trong đó a, b là hai số đã cho, \(a \ne 0\) được gọi là bất phương trình bậc nhất một ẩn (x là ẩn). |
Ví dụ: \(3x + 16 \le 0\); \( - 3x > 0\) là các bất phương trình bậc nhất một ẩn x.
\({x^2} - 4 \ge 0\) không phải là một bất phương trình bậc nhất một ẩn x vì \({x^2} - 4\) là một đa thức bậc hai.
\(3x - 2y < 2\) không phải là một bất phương trình bậc nhất một ẩn vì đa thức \(3x - 2y\) là đa thức với hai biến x và y.
3. Cách giải bất phương trình bậc nhất một ẩn
Giải một bất phương trình nghĩa là tìm tất cả các nghiệm của nó.
Để giải bất phương trình \(ax + b > 0\) (hoặc \(ax + b < 0,ax + b \ge 0,ax + b \le 0\)), trong đó \(a \ne 0\), ta thực hiện ba bước sau: Bước 1. Cộng –b vào hai vế và giữ nguyên chiều của bất phương trình ban đầu. Bước 2. Chia hai vế của bất phương trình thu được ở Bước 1 cho số \(a \ne 0\) theo quy tắc: - Nếu \(a > 0\) thì giữ nguyên chiều của bất phương trình; - Nếu \(a < 0\) thì đổi chiều của bất phương trình. Bước 3. Kết luận nghiệm của bất phương trình. |
Ví dụ: Giải bất phương trình \( - 2x - 4 > 0\)
Lời giải: Ta có:
\(\begin{array}{l} - 2x - 4 > 0\\ - 2x > 0 + 4\\ - 2x > 4\\x < 4.\left( { - \frac{1}{2}} \right)\\x < - 2\end{array}\)
Vậy nghiệm của bất phương trình là \(x < - 2\).
Lưu ý:
Ở Bước 1, ta đã thực hiện quy tắc sau, gọi là quy tắc chuyển vế: Khi chuyển một hạng tử từ vế này sang vế kia, ta phải đổi dấu hạng tử đó.
Quy tắc thực hiện ở Bước 2 gọi là quy tắc nhân với một số: Khi nhân hai vế của một bất phương trình cùng một số khác 0, ta phải:
- Giữ nguyên chiều bất phương trình nếu số đó dương;
- Đổi chiều bất phương trình nếu số đó âm.
Nhờ hai quy tắc này, ta có thể giải được nhiều bất phương trình phức tạp hơn.