Giải bài tập 3.19 trang 65 SGK Toán 9 tập 1 - Cùng khám phá

2024-09-14 18:34:35

Đề bài

Diện tích A của hình tròn bán kính r được tính bởi công thức \(A = \pi {r^2}\).

a) Viết biểu thức tính r theo A từ công thức trên.

b) Diện tích của hình tròn \({C_1}\) gấp 9 lần diện tích của hình tròn \({C_2}\) thì bán kính của hình tròn \({C_1}\) gấp bao nhiêu lần bán kính của hình tròn \({C_2}\)?

Phương pháp giải - Xem chi tiết

a) Sử dụng kiến thức căn bậc hai của một biểu thức để tìm r: Với A là một biểu thức đại số, người ta gọi \(\sqrt A \) là căn thức bậc hai của A.

b) + Tính diện tích của hai hình tròn \({C_1}\) và \({C_2}\) theo bán kính.

+ Lập tỉ số diện tích hình tròn \({C_1}\) và hình tròn \({C_2}\) theo hai bán kính, từ đó tính được bán kính của hình tròn \({C_1}\) gấp bao nhiêu lần bán kính của hình tròn \({C_2}\).

Lời giải chi tiết

a) Vì \(A = \pi {r^2}\) nên \({r^2} = \frac{A}{\pi }\) nên \(r = \sqrt {\frac{A}{\pi }} \) (do bán kính của hình tròn luôn lớn hơn 0).

b) Gọi bán kính của hình tròn \({C_1}\) và \({C_2}\) lần lượt là: \({r_1}\) và \({r_2}\).

Diện tích của hình tròn \({C_1}\) là: \({S_1} = \pi r_1^2\).

Diện tích của hình tròn \({C_2}\) là: \({S_2} = \pi r_2^2\).

Vì \({S_1} = 9{S_2}\) nên \(\pi r_1^2 = 9\pi r_2^2\), hay \(r_1^2 = 9r_2^2\).

Do đó, \(\frac{{r_1^2}}{{r_2^2}} = 9\). Do đó, \({\left( {\frac{{{r_1}}}{{{r_2}}}} \right)^2} = {3^2}\) nên \({r_1} = 3{r_2}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"