Giải bài tập 3.14 trang 64 SGK Toán 9 tập 1 - Cùng khám phá

2024-09-14 18:34:36

Đề bài

Rút gọn rồi tính giá trị các biểu thức sau:

a) \(\sqrt {9{{\left( {4 - 4x + {x^2}} \right)}^2}} \) tại \(x = \sqrt 2 \);

b) \(\sqrt {4{a^2}{{\left( {9{b^2} + 6b + 1} \right)}^2}} \) tại \(a =  - 2,b =  - \sqrt 3 \);

c) \({a^2}{b^2}.\sqrt {\frac{{9{b^4}}}{{25{a^6}}}} \) tại \(a =  - 3,b = \sqrt 5 \);

d) \(\frac{{\sqrt {3{x^6}{y^4}} }}{{\sqrt {27{x^2}{y^2}} }}\) tại \(x =  - 3,y = \sqrt 5 \).

Phương pháp giải - Xem chi tiết

a) + Sử dụng kiến thức để rút gọn biểu thức: Với mọi biểu thức đại số A, ta có: \(\sqrt {{A^2}}  = \left| A \right|\).

+ Thay \(x = \sqrt 2 \) vào biểu thức vừa rút gọn để tính giá trị biểu thức.

b) + Sử dụng kiến thức để rút gọn biểu thức: Với mọi biểu thức đại số A, ta có: \(\sqrt {{A^2}}  = \left| A \right|\).

+ Thay \(a =  - 2,b =  - \sqrt 3 \) vào biểu thức vừa rút gọn để tính giá trị biểu thức.

c) + Sử dụng kiến thức để rút gọn biểu thức: Với mọi biểu thức đại số A, ta có: \(\sqrt {{A^2}}  = \left| A \right|\).

+ Thay \(a =  - 3,b = \sqrt 5 \) vào biểu thức vừa rút gọn để tính giá trị biểu thức.

d) + Sử dụng kiến thức để rút gọn biểu thức: Với biểu thức A không âm và biểu thức B dương, ta có: \(\sqrt {\frac{A}{B}}  = \frac{{\sqrt A }}{{\sqrt B }}\), \(\sqrt {{A^2}}  = \left| A \right|\).

+ Thay \(x =  - 3,y = \sqrt 5 \) vào biểu thức vừa rút gọn để tính giá trị biểu thức.

Lời giải chi tiết

a) Ta có:

\(\sqrt {9{{\left( {4 - 4x + {x^2}} \right)}^2}}  = \sqrt {9{{\left( {2 - x} \right)}^4}}  = \sqrt {{{\left[ {3{{\left( {x - 2} \right)}^2}} \right]}^2}}  = 3{\left( {x - 2} \right)^2}\)

Với \(x = \sqrt 2 \) thay vào biểu thức ta có giá trị của biểu thức là:

\(3{\left( {\sqrt 2  - 2} \right)^2} = 3{\left[ {\sqrt 2 \left( {1 - \sqrt 2 } \right)} \right]^2} = 6{\left( {1 - \sqrt 2 } \right)^2}\)

b) Ta có:

\(\sqrt {4{a^2}{{\left( {9{b^2} + 6b + 1} \right)}^2}}  = \sqrt {4{a^2}{{\left( {3b + 1} \right)}^4}}  = \sqrt {{{\left[ {2a{{\left( {3b + 1} \right)}^2}} \right]}^2}}  = 2\left| a \right|{\left( {3b + 1} \right)^2}\)

Với \(a =  - 2,b =  - \sqrt 3 \) thay vào biểu thức ta có giá trị của biểu thức là:

\(2.\left| { - 2} \right|.{\left( {3\sqrt 3  + 1} \right)^2} = 4{\left( {3\sqrt 3  + 1} \right)^2}\)

c) Ta có:

\({a^2}{b^2}.\sqrt {\frac{{9{b^4}}}{{25{a^6}}}}  = {a^2}{b^2}.\sqrt {{{\left( {\frac{{3{b^2}}}{{5{a^3}}}} \right)}^2}}  = {a^2}{b^2}.\frac{{3{b^2}}}{{5{{\left| a \right|}^3}}} = \frac{{3{b^4}}}{{5\left| a \right|}}\).

Với \(a =  - 3,b = \sqrt 5 \) thay vào biểu thức ta có giá trị của biểu thức là:

\(\frac{{3{{\left( {\sqrt 5 } \right)}^4}}}{{5.\left| { - 3} \right|}} = \frac{{{{3.5}^2}}}{{5.3}} = 5\).

d) Ta có:

\(\frac{{\sqrt {3{x^6}{y^4}} }}{{\sqrt {27{x^2}{y^2}} }} = \sqrt {\frac{{3{x^6}{y^4}}}{{27{x^2}{y^2}}}}  = \sqrt {\frac{{{x^4}{y^2}}}{9}}  = \sqrt {{{\left( {\frac{{{x^2}y}}{3}} \right)}^2}}  = \frac{{{x^2}\left| y \right|}}{3}\)

Với \(x =  - 3,y = \sqrt 5 \) thay vào biểu thức ta có giá trị của biểu thức là:

\(\frac{{{{\left( { - 3} \right)}^2}\left| {\sqrt 5 } \right|}}{3} = \frac{{{3^2}\sqrt 5 }}{3} = 3\sqrt 5 \).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"