Giải mục 5 trang 62, 63, 64 SGK Toán 9 tập 1 - Cùng khám phá

2024-09-14 18:34:37

HĐ5

Trả lời câu hỏi Hoạt động 5 trang 62 SGK Toán 9 Cùng khám phá

a) Nhân cả tử và mẫu của biểu thức \(\frac{4}{{3\sqrt 2 }}\) với \(\sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu.

b) Nhân cả tử và mẫu của biểu thức \(\frac{5}{{\sqrt 2  + 1}}\) với \(\sqrt 2  - 1\) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu.

c) Nhân cả tử và mẫu của biểu thức \(\frac{6}{{\sqrt 5  - \sqrt 2 }}\) với \(\sqrt 5  + \sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu.

Phương pháp giải:

Với hai biểu thức A và B không âm, ta có: \(\sqrt {A.B}  = \sqrt A .\sqrt B \).

Lời giải chi tiết:

a) \(\frac{{4\sqrt 2 }}{{3\sqrt 2 .\sqrt 2 }}\)\( = \frac{{4\sqrt 2 }}{{3.2}}\)\( = \frac{{2\sqrt 2 }}{3}\).

b) \(\frac{{5\left( {\sqrt 2  - 1} \right)}}{{\left( {\sqrt 2  + 1} \right)\left( {\sqrt 2  - 1} \right)}}\)\( = \frac{{5\left( {\sqrt 2  - 1} \right)}}{{{{\left( {\sqrt 2 } \right)}^2} - {1^2}}}\)\( = \frac{{5\left( {\sqrt 2  - 1} \right)}}{{2 - 1}}\)\( = 5\left( {\sqrt 2  - 1} \right)\).

c) \(\frac{{6\left( {\sqrt 5  + \sqrt 2 } \right)}}{{\left( {\sqrt 5  - \sqrt 2 } \right)\left( {\sqrt 5  + \sqrt 2 } \right)}}\)\( = \frac{{6\left( {\sqrt 5  + \sqrt 2 } \right)}}{{{{\left( {\sqrt 5 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}}\)\( = \frac{{6\left( {\sqrt 5  + \sqrt 2 } \right)}}{{5 - 2}}\)\( = 2\left( {\sqrt 5  + \sqrt 2 } \right)\).


LT5

Trả lời câu hỏi Luyện tập 5 trang 64 SGK Toán 9 Cùng khám phá

Trục căn thức ở mẫu (với giả thiết các biểu thức đều có nghĩa):

a) \(\frac{6}{{\sqrt x }}\);

b) \(\frac{{\sqrt y }}{{1 + \sqrt y }}\);

c) \(\frac{{x\left( {x - y} \right)}}{{\sqrt x  - \sqrt y }}\).

Phương pháp giải:

a) Với các biểu thức A, B mà \(B > 0\), ta có: \(\frac{A}{{\sqrt B }} = \frac{{A\sqrt B }}{B}\).

b) Với các biểu thức A, B, C mà \(A \ge 0\) và \(A \ne {B^2}\), ta có: \(\frac{C}{{\sqrt A  + B}} = \frac{{C\left( {\sqrt A  - B} \right)}}{{A - {B^2}}}\).

c) Với các biểu thức A, B, C mà \(A \ge 0,B \ge 0\) và \(A \ne B\), ta có: \(\frac{C}{{\sqrt A  - \sqrt B }} = \frac{{C\left( {\sqrt A  + \sqrt B } \right)}}{{A - B}}\).

Lời giải chi tiết:

a) \(\frac{6}{{\sqrt x }} = \frac{{6\sqrt x }}{x}\);

b) \(\frac{{\sqrt y }}{{1 + \sqrt y }} = \frac{{\sqrt y \left( {1 - \sqrt y } \right)}}{{1 - y}}\);

c) \(\frac{{x\left( {x - y} \right)}}{{\sqrt x  - \sqrt y }} = \frac{{x\left( {x - y} \right)\left( {\sqrt x  + \sqrt y } \right)}}{{x - y}} = x\left( {\sqrt x  + \sqrt y } \right)\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"