Giải bài tập 4.24 trang 90 SGK Toán 9 tập 1 - Cùng khám phá

2024-09-14 18:35:22

Đề bài

Trong Hình 4.35, tỉ số \(\frac{{BC}}{{AH}}\) bằng

A. \(\frac{{\sqrt 3 }}{3} + 1\).

B. \(\sqrt 3  + 1\).

C. \(\frac{{\sqrt 2 }}{2} + 1\).

D. \(\sqrt 2  + 1\).

Phương pháp giải - Xem chi tiết

+ Tam giác ABH vuông tại H nên tính dược BH.

+ Tam giác ACH vuông tại H nên ta có \(CH = AH\).

+ Lại có: \(BC = BH + CH\), từ đó tính được tỉ số \(\frac{{BC}}{{AH}}\).

Lời giải chi tiết

Tam giác ABH vuông tại H nên

\(\frac{{BH}}{{AH}} = \tan BAH = \tan {30^o} = \frac{{\sqrt 3 }}{3}\), do đó, \(BH = \frac{{\sqrt 3 }}{3}AH\).

Tam giác ACH vuông tại H nên

\(\frac{{CH}}{{AH}} = \tan CAH = \tan {45^o} = 1\), do đó, \(CH = AH\).

Do đó, \(BC = BH + CH\)\( = \frac{{\sqrt 3 }}{3}AH + AH\)\( = \left( {\frac{{\sqrt 3 }}{3} + 1} \right)AH\)

Suy ra: \(\frac{{BC}}{{AH}} = \frac{{\left( {\frac{{\sqrt 3 }}{3} + 1} \right)AH}}{{AH}} = \frac{{\sqrt 3 }}{3} + 1\)

Chọn A

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"