Giải bài tập 5.23 trang 121 SGK Toán 9 tập 1 - Cùng khám phá

2024-09-14 18:36:11

Đề bài

Cho điểm A thuộc đường tròn (O). Trên tiếp tuyến tại A của (O) xác định điểm M sao cho \(AM = AO\). Đường thẳng OM cắt (O) tại B và C (B nằm giữa O và M).

a) Tính góc ở tâm BOA.

b) Tính số đo cung lớn AC.

Phương pháp giải - Xem chi tiết

a) Chứng minh tam giác MOA vuông cân tại O, suy ra \(\widehat {BOA} = {45^o}\).

b) Tính số đo góc AOC, từ đó tính số đo cung AC nhỏ, từ đó tính được số đo cung AC lớn.

Lời giải chi tiết

a) Vì MA là tiếp tuyến của (O) nên \(MA \bot AO\), suy ra tam giác AMO vuông tại A. Mà \(MA = OA\) nên tam giác AMO vuông cân tại O. Do đó, \(\widehat {BOA} = {45^o}\).

b) Ta có: \(\widehat {AOC} = {180^o} - \widehat {BOA} = {135^o}\)

Vì AOC là góc ở tâm chắn cung nhỏ AC nên \(sđ\overset\frown{A{{C}_{nhỏ}}}={{135}^{o}}\).

Số đo cung AC lớn là: \({360^o} - {135^o} = {225^o}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"