Giải bài tập 5.44 trang 129 SGK Toán 9 tập 1 - Cùng khám phá

2024-09-14 18:36:27

Đề bài

Cho MA và MB là hai tiếp tuyến của đường tròn (O; R) (A, B là hai tiếp điểm) sao cho \(\Delta \)MAB là tam giác đều. Khoảng cách OM bằng

A. \(\frac{1}{2}R\).

B. R.

C. 2R.

D. \(R\sqrt 2 \).

Phương pháp giải - Xem chi tiết

+ Chứng minh \(\widehat {AMB} = {60^o}\).

+ Chứng minh MO là tia phân giác \(\widehat {AMB}\), nên \(\widehat {AMO} = \frac{1}{2}\widehat {AMB}\).

+ Chứng minh tam giác AOM vuông tại M nên \(AO = MO.\sin AMO\), từ đó tính được MO.

Lời giải chi tiết

Vì tam giác MAB đều nên \(\widehat {AMB} = {60^o}\).

Vì MA và MB là tiếp tuyến của (O) nên MO là tia phân giác \(\widehat {AMB}\), nên \(\widehat {AMO} = \frac{1}{2}\widehat {AMB} = \frac{1}{2}{.60^o} = {30^o}\)

Vì MA là tiếp tuyến của (O) nên \(MA \bot AO\). Do đó, tam giác MAO vuông tại A.

Suy ra, \(AO = MO.\sin AMO\) nên

\(MO = \frac{{AO}}{{\sin AMO}} = \frac{R}{{\sin {{30}^o}}} = 2R\).

Chọn C

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"