Giải mục 2 trang 8, 9 SGK Toán 9 tập 2 - Cùng khám phá

2024-09-14 18:36:52

HĐ2

Trả lời câu hỏi Hoạt động 2 trang 8 SGK Toán 9 Cùng khám phá

Phân tích vế trái của các phương trình sau thành nhân tử rồi giải các phương trình đó:

a) 2x – x2 = 0;

b) \({x^2} - 6x + 9 = \frac{1}{2}\)

Phương pháp giải:

Phân tích thành nhân tử rồi giải phương trình.

Lời giải chi tiết:

a) 2x – x2 = 0

x(2 – x) = 0

\(\begin{array}{l}\left[ {\begin{array}{*{20}{c}}{x = 0}\\{2 - x = 0}\end{array}} \right.\\\left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 2}\end{array}} \right.\end{array}\)

Vậy phương trình có nghiệm là x = 0 và x = 2.

b) \({x^2} - 6x + 9 = \frac{1}{2}\)

\(\begin{array}{l}{x^2} - 6x + 9 = \frac{1}{2}\\{\left( {x - 3} \right)^2} = \frac{1}{2}\\\left[ {\begin{array}{*{20}{c}}{x - 3 = \frac{1}{{\sqrt 2 }}}\\{x - 3 =  - \frac{1}{{\sqrt 2 }}}\end{array}} \right.\\\left[ {\begin{array}{*{20}{c}}{x = \frac{{6 + \sqrt 2 }}{2}}\\{x = \frac{{6 + \sqrt 2 }}{2}}\end{array}} \right.\end{array}\)

Vậy phương trình có 2 nghiệm là \(x = \frac{{6 + \sqrt 2 }}{2}\);\(x = \frac{{6 - \sqrt 2 }}{2}\).


LT2

Trả lời câu hỏi Luyện tập 2 trang 8 SGK Toán 9 Cùng khám phá

Giải các phương trình sau:

a) 3x2 = - 4x;

b) \(2{x^2} - 3 = 0\)

Phương pháp giải:

Dựa vào cách giải phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) theo các cách sau:

Đưa về phương trình tích

Biến đổi vế trái của phương trình về dạng a(x + h)2 = k với h, k là các hằng số.

Lời giải chi tiết:

a) 3x2 = - 4x;

3x2 + 4x = 0

x(3x + 4) = 0

x = 0 hoặc 3x + 4 = 0

x = 0 hoặc x = \(\frac{{ - 4}}{3}\).

Vậy phương trình có hai nghiệm x1 = 0, x2 = \(\frac{{ - 4}}{3}\).

b) \(2{x^2} - 3 = 0\)

\(\begin{array}{l}2{x^2} = 3\\{x^2} = \frac{3}{2}\end{array}\)

x = \(\frac{{\sqrt 6 }}{2}\) hoặc \(x =  - \frac{{\sqrt 6 }}{2}\)

Vậy phương trình có hai nghiệm x1 = \(\frac{{\sqrt 6 }}{2}\), x2 =\( - \frac{{\sqrt 6 }}{2}\).


VD1

Trả lời câu hỏi Vận dụng 1 trang 8 SGK Toán 9 Cùng khám phá

Một con cá heo nhảy lên khỏi mặt nước. Sau t(s) kể từ khi nhảy lên, cá heo ở độ cao h = 6t – 5t2 (m) so với mặt nước. Sau bao lâu con cá heo ấy lại quay trở về mặt nước?

Phương pháp giải:

Con cá heo quay trở về mặt nước tương ứng với h = 0

Giải phương trình 6t – 5t2 = 0 để tìm t.

Dựa vào cách giải phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) theo các cách sau:

Đưa về phương trình tích

Biến đổi vế trái của phương trình về dạng a(x + h)2 = k với h, k là các hằng số.

Lời giải chi tiết:

Thay h = 0 vào h = 6t – 5t2  (t > 0) ta có:

6t – 5t2 = 0

t(6 – 5t) = 0

t = 0 (L)  hoặc t = \(\frac{6}{5} = 1,2\)(TM)

Vậy sau 1,2 giây con cá heo ấy lại quay trở về mặt nước.


LT3

Trả lời câu hỏi Luyện tập 3 trang 9 SGK Toán 9 Cùng khám phá

Giải phương trình \(2{x^2} - 5x + 2 = 0\).

Phương pháp giải:

Dựa vào cách giải phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) theo các cách sau:

Đưa về phương trình tích

Biến đổi vế trái của phương trình về dạng a(x + h)2 = k với h, k là các hằng số.

Lời giải chi tiết:

\(\begin{array}{l}2{x^2} - 5x + 2 = 0\\2{x^2} - 5x =  - 2\\{x^2} - \frac{5}{2}x + {\left( {\frac{5}{2}} \right)^2} =  - 1 + {\left( {\frac{5}{2}} \right)^2}\\{\left( {x - \frac{5}{2}} \right)^2} = \frac{{17}}{4}\end{array}\)

\(x - \frac{5}{2} = \frac{{\sqrt {17} }}{2}\) hoặc \(x - \frac{5}{2} =  - \frac{{\sqrt {17} }}{2}\)

\(x = \frac{{\sqrt {17} }}{2} + \frac{5}{2}\) hoặc \(x =  - \frac{{\sqrt {17} }}{2} + \frac{5}{2}\)

Vậy phương trình có hai nghiệm x1 = \(\frac{{5 + \sqrt {17} }}{2}\), x2 =\(\frac{{5 - \sqrt {17} }}{2}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"