Giải bài tập 6.30 trang 23 SGK Toán 9 tập 2 - Cùng khám phá

2024-09-14 18:36:59

Đề bài

Cho phương trình \(3{x^2} - x - 1 = 0\) có hai nghiệm \({x_1},{x_2}\). Không giải phương trình, hãy tính giá trị của các biểu thức sau:

A = \(\left( {3{x_1} - 1} \right)(3{x_2} - 1)\)

B = \({x_1}^2 + {x_2}^2\)

Phương pháp giải - Xem chi tiết

Dựa vào: Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) thì:

\(\left\{ {\begin{array}{*{20}{c}}{S = {x_1} + {x_2} =  - \frac{b}{a}}\\{P = {x_1}{x_2} = \frac{c}{a}}\end{array}} \right.\)

Lời giải chi tiết

Phương trình \(3{x^2} - x - 1 = 0\) có a = 3; b = -1, c = -1.

\(\Delta  = {( - 1)^2} - 4.3.( - 1) = 13 > 0\) nên phương trình có hai nghiệm phân biệt \({x_1},{x_2}\).

Ta có \(S = {x_1} + {x_2} = \frac{1}{3},P = {x_1}{x_2} =  - \frac{1}{3}\).

A = \(\left( {3{x_1} - 1} \right)(3{x_2} - 1) = 9{x_1}{x_2} - 3{x_1} - 3{x_2} + 1\)

\(\begin{array}{l} = 9{x_1}{x_2} - 3\left( {{x_1} + {x_2}} \right) + 1\\ = 9.\left( { - \frac{1}{3}} \right) - 3.\frac{1}{3} + 1\\ =  - 3\end{array}\)

B = \({x_1}^2 + {x_2}^2\)

Ta có \({\left( {{x_1} + {x_2}} \right)^2} = {x_1}^2 + 2{x_1}{x_2} + {x_2}^2\)

Suy ra \({x_1}^2 + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = \frac{1}{3} - 2.\left( { - \frac{1}{3}} \right) = 1.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"