Đề bài
Trong Hình 7.22, ABCD là tứ giác nội tiếp. Tính số đo các góc x, y, z.
Phương pháp giải - Xem chi tiết
Trong một tứ giác nội tiếp, tổng số đo hai góc đối nhau bằng \({180^o}\) và góc bẹt bằng \({180^o}\).
Lời giải chi tiết
Ta có ABCD nội tiếp nên \(\widehat {ADB} = \widehat {ACB} = {47^o}\) (góc nội tiếp cùng chắn cung AB)
Ta có \(\widehat {ADE} = {180^o}\) (góc bẹt) nên
\(\widehat {ADC} = {180^o} - \widehat {EDC} = {180^o} - {70^o} = {110^o}\)
Vì ABCD nội tiếp nên
\(\widehat {ABC} = {180^o} - {110^o} = {70^o}\)
suy ra \(\widehat {DBC} = {70^o} - {50^o} = {20^o}\)
Ta có \(x =\widehat {DAC} = \widehat {DBC} = {20^o}\) (góc nội tiếp cùng chắn cung CD)
Xét tam giác ADC ta có
\(z = \widehat {ACD} = {180^o} - \left( {\widehat {ADC} + \widehat {CAD}} \right) = {180^o} - \left( {{{110}^o} + {{20}^o}} \right) = {50^o}\)
Ta có \(\widehat {BCE} = {180^o}\) (góc bẹt) nên \(\widehat {DCE} = {180^o} - \left( {\widehat {BCA} + \widehat {ACD}} \right) = {180^o} - \left( {{{47}^o} + {{50}^o}} \right) = {83^o}\)
Xét tam giác CDE có
\(y = \widehat {DEC} = {180^o} - \left( {\widehat {CDE} + \widehat {DCE}} \right) = {180^o} - \left( {{{70}^o} + {{83}^o}} \right) = {27^o}\).