Đề bài
Cho tam giác nhọn ABC có AD, BE, CF là đường cao và H là trực tâm. Chứng minh rằng
a) Tứ giác AEHF, BDHF và CDHE là các tứ giác nội tiếp
b) DA là đường phân giác của góc FDE.
Phương pháp giải - Xem chi tiết
Đọc kĩ dữ kiện để vẽ hình
Trong một tứ giác nội tiếp, tổng số đo hai góc đối nhau bằng \({180^o}\).
Áp dụng hai góc nội tiếp cùng chắn một cung thì bằng nhau.
Lời giải chi tiết
a) Ta có \(\widehat {AEH} = \widehat {AFH} = {90^o}\) (Do CF và BE là đường cao)
suy ra AEHF là tứ giác nội tiếp.
Chứng minh tương tự BDHF và CDHE là các tứ giác nội tiếp
b) Theo phần a ta có BDHF nội tiếp nên \(\widehat {ABE} = \widehat {FDA}\)
DHEC nội tiếp nên \(\widehat {ADE} = \widehat {FCA}\).
Lại có \(\widehat {ABE} = \widehat {FCA}\) (cùng phụ \(\widehat {BAC}\))
Suy ra \(\widehat {FDA} = \widehat {ADE}\) hay AD là đường phân giác của góc FDE.