Giải bài tập 7.15 trang 39 SGK Toán 9 tập 2 - Cùng khám phá

2024-09-14 18:38:17

Đề bài

Tính chu vi của đường tròn nội tiếp và đường tròn ngoại tiếp tam giác đều ABC có cạnh bằng \(3\sqrt 2 \) cm. Diện tích của các hình tròn là bao nhiêu?

Phương pháp giải - Xem chi tiết

Bán kính đường tròn nội tiếp của tam giác đều bằng \(\frac{{a\sqrt 3 }}{6}\).

Chu vi đường tròn nội tiếp của tam giác đều là C = \(2\pi r\)

Diện tích đường tròn nội tiếp của tam giác đều là S = \(\pi {r^2}\)

Bán kính đường tròn ngoại tiếp của tam giác đều bằng \(\frac{{a\sqrt 3 }}{3}\).

Chu vi đường tròn ngoại tiếp của tam giác đều là C = \(2\pi R\)

Diện tích đường tròn nội tiếp của tam giác đều là S = \(\pi {R^2}\)

Lời giải chi tiết

Bán kính đường tròn nội tiếp của tam giác đều bằng \(\frac{{3\sqrt 2 .\sqrt 3 }}{6} = \frac{{\sqrt 6 }}{2}\)cm.

Chu vi đường tròn nội tiếp của tam giác đều là:

C = \(2\pi .\frac{{\sqrt 6 }}{2} = \sqrt 6 \pi \) \(c{m^2}\)

Diện tích đường tròn nội tiếp của tam giác đều là:

S = \(\pi {\left( {\frac{{\sqrt 6 }}{2}} \right)^2} = \frac{3}{2}\pi \)\(c{m^2}\)

Bán kính đường tròn ngoại tiếp của tam giác đều bằng \(\frac{{3\sqrt 2 .\sqrt 3 }}{3} = \sqrt 6 \)cm.

Chu vi đường tròn ngoại tiếp của tam giác đều là:

C = \(2\sqrt 6 \pi \)cm

Diện tích đường tròn nội tiếp của tam giác đều là:

S = \(\pi {(\sqrt 6 )^2} = 6\pi \)\(c{m^2}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"