Giải bài 3 trang 7 vở thực hành Toán 9

2024-09-14 18:40:42

Đề bài

Viết nghiệm và biểu diễn hình học tất cả các nghiệm của mỗi phương trình bậc nhất hai ẩn sau:

a) \(2x - y = 3\);

b) \(0x + 2y =  - 4\);

c) \(3x + 0y = 5\).

Phương pháp giải - Xem chi tiết

+ Từ phương trình đầu bài cho, ta tính x theo y hoặc y theo x, từ đó kết luận được nghiệm tổng quát của phương trình.

+ Biểu diễn hình học tất cả các nghiệm của phương trình bậc nhất hai ẩn là đường thẳng \(ax + by = c\).

Lời giải chi tiết

a) Xét phương trình \(2x - y = 3\). (1)

Ta viết (1) dưới dạng \(y = 2x - 3\). Khi đó, phương trình (1) có nghiệm là \(\left( {x;2x - 3} \right)\) với \(x \in \mathbb{R}\) tùy ý. Mỗi nghiệm này là tọa độ của một điểm thuộc đường thẳng d: \(2x - y = 3\).

Ta có: \(A\left( {0; - 3} \right)\) và \(B\left( {\frac{3}{2};0} \right)\) là hai điểm nằm trên đường thẳng d nên ta có hình vẽ biểu diễn tập nghiệm của phương trình (1) như sau:

b) Xét phương trình \(0x + 2y =  - 4\). (2)

Ta viết gọn (2) thành \(y =  - 2\). Phương trình (2) có nghiệm là \(\left( {x; - 2} \right)\) với \(x \in \mathbb{R}\) tùy ý. Mỗi nghiệm này là tọa độ của một điểm thuộc đường thẳng song song với trục hoành cắt trục tung tại điểm \(\left( {0; - 2} \right)\). Ta gọi đó là đường thẳng \(y =  - 2\) nên ta có hình vẽ biểu diễn tập nghiệm của phương trình (2) như sau:

c) Xét phương trình \(3x + 0y = 5\). (3)

Ta viết gọn (3) thành \(x = \frac{5}{3}\). Phương trình (3) có nghiệm là \(\left( {\frac{5}{3};y} \right)\) với \(y \in \mathbb{R}\) tùy ý. Mỗi nghiệm này là tọa độ của một điểm thuộc đường thẳng song song với trục tung và cắt trục tung tại điểm \(\left( {\frac{5}{3};0} \right)\). Ta gọi đó là đường thẳng \(x = \frac{5}{3}\) nên ta có hình vẽ biểu diễn tập nghiệm của phương trình (3) như sau:

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"