Giải câu hỏi trắc nghiệm trang 11 vở thực hành Toán 9

2024-09-14 18:40:45

Chọn phương án đúng trong mỗi câu sau:

Câu 1

Trả lời Câu 1 trang 11 Vở thực hành Toán 9

Hệ phương trình \(\left\{ \begin{array}{l}\frac{5}{3}x + y =  - 2\\x - y = 3\end{array} \right.\)

A. có nghiệm là \(\left( {\frac{3}{8};\frac{{27}}{8}} \right)\).

B. có nghiệm là \(\left( {\frac{3}{8};\frac{{ - 21}}{8}} \right)\).

C. vô nghiệm.

D. có nghiệm là \(\left( {\frac{{ - 3}}{8};\frac{{27}}{8}} \right)\).

Phương pháp giải:

Sử dụng máy tính cầm tay để tìm nghiệm của hệ phương trình.

Lời giải chi tiết:

Sử dụng máy tính cầm tay, ta tìm được nghiệm của hệ phương trình \(\left\{ \begin{array}{l}\frac{5}{3}x + y =  - 2\\x - y = 3\end{array} \right.\) là: \(\left( {\frac{3}{8};\frac{{ - 21}}{8}} \right)\).

Chọn B


Câu 2

Trả lời Câu 2 trang 11 Vở thực hành Toán 9

Hệ phương trình \(\left\{ \begin{array}{l} - 2,5x + y = 5\\0,5x - 1,5y = 0\end{array} \right.\)

A. có một nghiệm.

B. có hai nghiệm.

C. vô nghiệm.

D. có vô số nghiệm.

Phương pháp giải:

Sử dụng máy tính cầm tay để tìm nghiệm của hệ phương trình.

Lời giải chi tiết:

Sử dụng máy tính cầm tay, ta tìm được nghiệm của hệ phương trình \(\left\{ \begin{array}{l} - 2,5x + y = 5\\0,5x - 1,5y = 0\end{array} \right.\) là: \(\left( {\frac{{ - 30}}{{13}};\frac{{ - 10}}{{13}}} \right)\).

Do đó, hệ phương trình \(\left\{ \begin{array}{l} - 2,5x + y = 5\\0,5x - 1,5y = 0\end{array} \right.\) có một nghiệm.

Chọn A


Câu 3

Trả lời Câu 3 trang 11 Vở thực hành Toán 9

Đường thẳng \(y = ax + b\) đi qua hai điểm (2; -1) và (-4; -3). Khi đó

A. \(a = 1;b =  - 3\).

B. \(a = \frac{1}{2};b =  - 2\).

C. \(a = \frac{1}{3};b =  - \frac{5}{3}\).

D. \(a = 0;b =  - 3\).

Phương pháp giải:

+ Vì đường thẳng \(y = ax + b\) đi qua điểm (2; -1) nên \( - 1 = 2a + b\) (1).

+ Vì đường thẳng \(y = ax + b\) đi qua điểm (-4; -3) nên \( - 3 =  - 4a + b\) (2).

+ Giải hệ phương trình \(\left\{ \begin{array}{l}2a + b =  - 1\\ - 4a + b =  - 3\end{array} \right.\) bằng phương pháp cộng đại số.

Lời giải chi tiết:

Vì đường thẳng \(y = ax + b\) đi qua điểm (2; -1) nên \( - 1 = 2a + b\) (1)

Vì đường thẳng \(y = ax + b\) đi qua điểm (-4; -3) nên \( - 3 =  - 4a + b\) (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}2a + b =  - 1\\ - 4a + b =  - 3\end{array} \right.\)

Trừ từng vế của hai phương trình, ta được: \(6a = 2\), suy ra \(a = \frac{1}{3}\).

Thế \(a = \frac{1}{3}\) vào phương trình thứ nhất ta được: \(2.\frac{1}{3} + b =  - 1\) hay \(\frac{2}{3} + b =  - 1\), suy ra \(b = \frac{{ - 5}}{3}\).

Chọn C


Câu 4

Trả lời Câu 4 trang 11 Vở thực hành Toán 9

Với giá trị nào của m thì hệ phương trình \(\left\{ \begin{array}{l}3x - {m^2}y = 5\\mx + 5y = 2\end{array} \right.\) nhận (3; 1) là nghiệm?

A. Không có giá trị nào của m thỏa mãn.

B. \(m = 2\).

C. \(m =  - 2\).

D. \(m =  - 1\).

Phương pháp giải:

Thay nghiệm (3; 1) vào từng phương trình của hệ để tìm m, nếu giá trị m của hai phương trình bằng nhau thì đó là giá trị m cần tìm.

Lời giải chi tiết:

Vì (3; 1) là nghiệm của hệ phương trình đã cho nên \(\left\{ \begin{array}{l}3.3 - {m^2}.1 = 5\\3m + 5.1 = 2\end{array} \right.\) , suy ra \(\left\{ \begin{array}{l}{m^2} = 4\\3m =  - 3\end{array} \right.\), suy ra \(\left\{ \begin{array}{l}m =  \pm 2\\m =  - 1\end{array} \right.\) (vô lí). Do đó, không có giá trị nào của m thỏa mãn.

Chọn A

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"