Đề bài
Không tính, hãy chứng minh
a) \(2.\left( { - 7} \right) + 2023 < 2.\left( { - 1} \right) + 2023\).
b) \(\left( { - 3} \right).\left( { - 8} \right) + 1975 > \left( { - 3} \right).\left( { - 7} \right) + 1975\).
Phương pháp giải - Xem chi tiết
a) Sử dụng tính chất: + Với ba số a, b, c và \(c > 0\) ta có: \(a < b\) thì \(ac < bc\).
+ Với ba số a, b, c ta có: \(a < b\) thì \(a + c < b + c\).
b) Sử dụng tính chất: + Với ba số a, b, c và \(c < 0\) ta có: \(a < b\) thì \(ac > bc\).
+ Với ba số a, b, c ta có: \(a > b\) thì \(a + c > b + c\).
Lời giải chi tiết
a) Vì \( - 7 < - 1\) nên \(2.\left( { - 7} \right) < 2.\left( { - 1} \right)\). Suy ra \(2.\left( { - 7} \right) + 2023 < 2.\left( { - 1} \right) + 2023\).
b) Vì \( - 8 < - 7\) nên \(\left( { - 3} \right).\left( { - 8} \right) > \left( { - 3} \right).\left( { - 7} \right)\). Suy ra \(\left( { - 3} \right).\left( { - 8} \right) + 1975 > \left( { - 3} \right).\left( { - 7} \right) + 1975\).