Giải bài 8 trang 52 vở thực hành Toán 9

2024-09-14 18:41:05

Đề bài

Không dùng MTCT, chứng minh rằng:

a) \({\left( {2 - \sqrt 5 } \right)^2} = 9 - 4\sqrt 5 \);

b) \(\sqrt {9 - 4\sqrt 5 }  - \sqrt 5  =  - 2\).

Phương pháp giải - Xem chi tiết

\(\sqrt {{A^2}}  = \left| A \right|\) với mọi biểu thức A.

Lời giải chi tiết

a) Áp dụng hằng đẳng thức \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\) và tính chất \({\left( {\sqrt x } \right)^2} = x\left( {x \ge 0} \right)\)

Ta có:

\({\left( {2 - \sqrt 5 } \right)^2} = {2^2} - 2.2.\sqrt 5  + {\left( {\sqrt 5 } \right)^2}\)

\(= 4 - 4\sqrt 5  + 5 = 9 - 4\sqrt 5 \)

b) Sử dụng kết quả câu a, hằng đẳng thức \(\sqrt {{A^2}}  = \left| A \right|\) và \(2 = \sqrt {{2^2}}  = \sqrt 4  < \sqrt 5 \) ta có

\(\sqrt {9 - 4\sqrt 5 }  - \sqrt 5  = \sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}}  - \sqrt 5  \\= \left| {2 - \sqrt 5 } \right| - \sqrt 5  = \sqrt 5  - 2 - \sqrt 5  =  - 2\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"