Giải bài 7 trang 55 vở thực hành Toán 9

2024-09-14 18:41:07

Đề bài

Không dùng MTCT, tính giá trị của các biểu thức sau:

a) \(A = \left( {\sqrt 3  - \sqrt 2 } \right)\left( {\sqrt 3  + \sqrt 2 } \right)\);

b) \(B = \frac{{\left( {2\sqrt 2  - 1} \right)\left( {\sqrt 2  + 1} \right)}}{{2 + \sqrt 2  + 1}}\).

Phương pháp giải - Xem chi tiết

+ \(\sqrt {{a^2}}  = \left| a \right|\) với mọi số thực a.

+ Với A, B là các biểu thức không âm, ta có \(\sqrt A .\sqrt B  = \sqrt {AB} \).

Lời giải chi tiết

a) Áp dụng hằng đẳng thức \(\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\) và tính chất \({\left( {\sqrt x } \right)^2} = x\left( {x \ge 0} \right)\)

Ta có: \(A = \left( {\sqrt 3  - \sqrt 2 } \right)\left( {\sqrt 3  + \sqrt 2 } \right) \)

\(= {\left( {\sqrt 3 } \right)^2} - {\left( {\sqrt 2 } \right)^2} = 1\)

b) Áp dụng tính chất \({\left( {\sqrt x } \right)^2} = x\left( {x \ge 0} \right)\), tính chất của lũy thừa và hằng đẳng thức hiệu hai lập phương, ta có:

\(2\sqrt 2  - 1 = {\left( {\sqrt 2 } \right)^3} - {1^3} \\= \left( {\sqrt 2  - 1} \right).\left[ {{{\left( {\sqrt 2 } \right)}^2} + \sqrt 2  + 1} \right] \\= \left( {\sqrt 2  - 1} \right)\left( {2 + \sqrt 2  + 1} \right).\)

Từ đó \(B = \frac{{\left( {\sqrt 2  - 1} \right)\left( {2 + \sqrt 2  + 1} \right)\left( {\sqrt 2  + 1} \right)}}{{2 + \sqrt 2  + 1}} \)

\(= \left( {\sqrt 2  - 1} \right)\left( {\sqrt 2  + 1} \right) = {\left( {\sqrt 2 } \right)^2} - {1^2} = 1\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"