Giải câu hỏi trắc nghiệm trang 53 vở thực hành Toán 9

2024-09-14 18:41:08

Chọn phương án đúng trong mỗi câu sau:

Câu 1

Trả lời Câu 1 trang 53 Vở thực hành Toán 9

Xét 4 khẳng định sau:

(1) \(\sqrt {{a^2}{b^2}}  = \left| {ab} \right|\), (a, b tùy ý);

(2) \(\sqrt {{a^2}{b^2}}  = ab\), (a, b tùy ý);

(3) \(\sqrt {{a^2}{b^2}}  = \left| a \right|\left| b \right|\), (a, b tùy ý);

(4) \(\sqrt {{a^2}{b^2}}  = \left( { - a} \right)\left( { - b} \right)\), (a, b tùy ý);

Trong 4 khẳng định trên, số khẳng định đúng là:

A. 1.

B. 2.

C. 3.

D. 4.

Phương pháp giải:

Với a, b tùy ý ta có:

\(\sqrt {{a^2}{b^2}}  = \sqrt {{{\left( {ab} \right)}^2}}  = \left| {ab} \right|;\)

\(\sqrt {{a^2}{b^2}}  = \sqrt {{a^2}} .\sqrt {{b^2}}  = \left| a \right|\left| b \right|\).

Lời giải chi tiết:

Với a, b tùy ý ta có:

\(\sqrt {{a^2}{b^2}}  = \sqrt {{{\left( {ab} \right)}^2}}  = \left| {ab} \right|;\)

\(\sqrt {{a^2}{b^2}}  = \sqrt {{a^2}} .\sqrt {{b^2}}  = \left| a \right|\left| b \right|\).

Do đó, có 2 khẳng định đúng.

Chọn B


Câu 2

Trả lời Câu 2 trang 53 Vở thực hành Toán 9

Trong các khẳng định sau, khẳng định nào đúng?

A. \(\sqrt { - 5{a^3}}  = a\sqrt { - 5a} \left( {a \in \mathbb{R}} \right)\).

B. \(\sqrt { - 5{a^3}}  =  - a\sqrt {5a} \left( {a \in \mathbb{R}} \right)\).

C. \(\sqrt { - 5{a^3}}  =  - a\sqrt { - 5a} \left( {a < 0} \right)\).

D. \(\sqrt { - 5{a^3}}  =  - a\sqrt {5a} \left( {a < 0} \right)\).

Phương pháp giải:

Với A, B là các biểu thức không âm, ta có \(\sqrt A .\sqrt B  = \sqrt {AB} \).

Lời giải chi tiết:

Ta có:

\(\sqrt { - 5{a^3}}  = \sqrt { - 5a.{a^2}}  \\= \left| a \right|\sqrt { - 5a}  \\=  - a\sqrt { - 5a} \left( {do\;a < 0} \right)\)

Chọn C


Câu 3

Trả lời Câu 3 trang 53 Vở thực hành Toán 9

Chọn khẳng định đúng:

A. \(\sqrt {64{a^4}{b^6}}  = 8{a^2}{b^3}\).

B. \(\sqrt {64{a^4}{b^6}}  = 8{\left( { - a} \right)^2}{b^3}\).

C. \(\sqrt {64{a^4}{b^6}}  = 8{a^2}{\left( { - b} \right)^3}\).

D. \(\sqrt {64{a^4}{b^6}}  = 8{a^2}\left| {{b^3}} \right|\).

Phương pháp giải:

Với A, B là các biểu thức không âm, ta có \(\sqrt A .\sqrt B  = \sqrt {AB} \).

Lời giải chi tiết:

\(\sqrt {64{a^4}{b^6}}  = \sqrt {{8^2}.{{\left( {{a^2}} \right)}^2}.{{\left( {{b^3}} \right)}^2}}  \\= \sqrt {{8^2}} .\sqrt {{{\left( {{a^2}} \right)}^2}} .\sqrt {{{\left( {{b^3}} \right)}^2}}  = 8{a^2}\left| {{b^3}} \right|\)

Chọn D

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"