Giải bài 5 trang 67 vở thực hành Toán 9

2024-09-14 18:41:14

Đề bài

Xét căn thức \(\sqrt[3]{{27{x^3} - 27{x^2} + 9x - 1}}\).

a) Viết biểu thức trong dấu căn dưới dạng một lập phương.

b) Tính giá trị của biểu thức \(A = {x^2} - x + 3 - \sqrt[3]{{27{x^3} - 27{x^2} + 9x - 1}}\) tại \(x = 2,1\).

Phương pháp giải - Xem chi tiết

a) Ta có \({\left( {\sqrt[3]{A}} \right)^3} = \sqrt[3]{{{A^3}}} = A\) với A là một biểu thức đại số. 

b) Thay \(x = 2,1\) vào biểu thức rút A rút gọn được để tìm giá trị của A.

Lời giải chi tiết

a) Biểu thức trong dấu căn là \(27{x^3} - 27{x^2} + 9x - 1\).

Từ đó có thể viết biểu thức trong dấu căn dưới dạng một lập phương như sau:

\(27{x^3} - 27{x^2} + 9x - 1 \\= {\left( {3x} \right)^3} - 3.{\left( {3x} \right)^2}.1 + 3.3x{.1^2} - {1^3} \\= {\left( {3x - 1} \right)^3}\)

b)  Theo câu a, ta có

\(\sqrt[3]{{27{x^3} - 27{x^2} + 9x - 1}} = \sqrt[3]{{{{\left( {3x - 1} \right)}^3}}} = 3x - 1\).

Do đó

\(A = {x^2} - x + 3 - \sqrt[3]{{27{x^3} - 27{x^2} + 9x - 1}} \\= {x^2} - x + 3 - 3x + 1 = {x^2} - 4x + 4 = {\left( {x - 2} \right)^2}\)

Giá trị của biểu thức A tại \(x = 2,1\) là \({\left( {2,1 - 2} \right)^2} = 0,01\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"