Giải bài 9 trang 75 vở thực hành Toán 9

2024-09-14 18:41:19

Đề bài

Cho tam giác ABC có \(\widehat A = {40^o},\widehat B = {60^o},AB = 6cm\). Hãy tính (làm tròn đến hàng đơn vị):

a) Chiều cao AH và cạnh AC;

b) Độ dài BH và CH.

Phương pháp giải - Xem chi tiết

a) Trong tam giác vuông ABH vuông tại H, ta có: \(\sin \widehat {ABH} = \frac{{AH}}{{AB}}\) tính được AH.

Xét tam giác ABC có \(\widehat {ACB} = {180^o} - \widehat {ABC} - \widehat {BAC}\)

Trong tam giác vuông ACH vuông tại H, ta có: \(\sin \widehat {ACH} = \frac{{AH}}{{AC}}\) tính được AC.

b) Ta có: \(\tan \widehat {ACH} = \frac{{AH}}{{CH}}\), nên tính được CH, \(\tan \widehat {ABH} = \frac{{AH}}{{BH}}\), nên tính được BH.

Lời giải chi tiết

(H.4.10)

a) Trong tam giác vuông ABH vuông tại H, ta có: \(\sin \widehat {ABH} = \frac{{AH}}{{AB}}\) nên \(AH = AB.\sin \widehat {ABH} = 6.\sin {60^o} \approx 5\left( {cm} \right)\)

Xét tam giác ABC có \(\widehat {ACB} = {180^o} - \widehat {ABC} - \widehat {BAC} = {80^o}\)

Trong tam giác vuông ACH vuông tại H, ta có: \(\sin \widehat {ACH} = \frac{{AH}}{{AC}}\) nên \(AC = \frac{{AH}}{{\sin \widehat {ACH}}} = \frac{{6\sin {{60}^o}}}{{\sin {{80}^o}}} \approx 5\left( {cm} \right)\)

b) Ta có: \(\tan \widehat {ACH} = \frac{{AH}}{{CH}}\), nên \(CH = \frac{{AH}}{{\tan \widehat {ACH}}} = \frac{{3\sqrt 3 }}{{\tan {{80}^o}}} \approx 1\)

\(\tan \widehat {ABH} = \frac{{AH}}{{BH}}\), nên \(BH = \frac{{AH}}{{\tan \widehat {ABH}}} = \frac{{3\sqrt 3 }}{{\tan {{60}^o}}} = 3\left( {cm} \right)\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"