Giải bài 8 trang 75 vở thực hành Toán 9

2024-09-14 18:41:20

Đề bài

Cho tam giác ABC vuông tại A, biết \(AB = 6cm,AC = 8cm\).

a) Tính tanB, cạnh BC, sinB, góc B (làm tròn đến độ).

b) Kẻ đường cao AH. Tính AH, BH, cos \(\widehat {BAH}\).

Phương pháp giải - Xem chi tiết

a) + Tam giác ABC có: \(\tan B = \frac{{AC}}{{AB}}\).

+ Áp dụng Pythagore vào tam giác ABC tính được BC.

+ \(\sin B = \frac{{AC}}{{BC}}\)

b) Trong tam giác vuông ABH có:

+ \(\sin B = \frac{{AH}}{{AB}}\) từ đó tính được AH; \(\tan B = \frac{{AH}}{{BH}}\) từ đó tính được BH.

+ \(\cos \widehat {BAH} = \sin B = \frac{4}{5}\) (vì \(\widehat {BAH}\) và góc B là hai góc phụ nhau).

Lời giải chi tiết

(H.4.9)

a) Trong tam giác ABC có \(\tan B = \frac{{AC}}{{AB}} = \frac{8}{6} = \frac{4}{3}\).

Theo định lí Pythagore, ta có \(B{C^2} = A{C^2} + A{B^2} = {8^2} + {6^2} = 100\)

\(BC = \sqrt {100}  = 10cm\)

Ta có \(\sin B = \frac{{AC}}{{BC}} = \frac{8}{{10}} = \frac{4}{5}\), từ đó suy ra \(\widehat B \approx {53^o}\)

b) Trong tam giác vuông ABH có:

\(\sin B = \frac{{AH}}{{AB}}\), suy ra \(AH = AB.\sin B = 6.\frac{4}{5} = \frac{{24}}{5}\left( {cm} \right)\)

\(\tan B = \frac{{AH}}{{BH}}\), suy ra \(BH = \frac{{AH}}{{\tan B}} = \frac{{24}}{5}:\frac{4}{3} = \frac{{18}}{5}\left( {cm} \right)\)

\(\cos \widehat {BAH} = \sin B = \frac{4}{5}\) (vì \(\widehat {BAH}\) và góc B là hai góc phụ nhau).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"