Giải bài 5 trang 92 vở thực hành Toán 9

2024-09-14 18:41:44

Đề bài

Cho tam giác ABC vuông tại A, có \(\widehat B = \alpha \) (H.4.44).

a) Hãy viết các tỉ số lượng giác \(\sin \alpha ,\cos \alpha \).

b) Sử dụng định lí Pythagore, chứng minh rằng \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\).

Phương pháp giải - Xem chi tiết

a) Xét tam giác ABC vuông tại A có góc nhọn B bằng \(\alpha \) thì:

+ Tỉ số giữa cạnh kề và cạnh huyền gọi là cos của \(\alpha \).

+ Tỉ số giữa cạnh đối và cạnh huyền gọi là sin của \(\alpha \).

b) + Theo ĐL Pythagore ta có \(A{C^2} + A{B^2} = B{C^2}\).

+ \({\sin ^2}\alpha  + {\cos ^2}\alpha  = \frac{{A{C^2}}}{{B{C^2}}} + \frac{{A{B^2}}}{{B{C^2}}} \)

\(= \frac{{A{C^2} + A{B^2}}}{{B{C^2}}} = \frac{{B{C^2}}}{{B{C^2}}} = 1\)

Lời giải chi tiết

a) Trong tam giác ABC vuông tại A, ta có: \(\sin \alpha  = \frac{{AC}}{{BC}},\cos \alpha  = \frac{{AB}}{{BC}}\).

b) Theo a), ta có

\({\sin ^2}\alpha  + {\cos ^2}\alpha  = \frac{{A{C^2}}}{{B{C^2}}} + \frac{{A{B^2}}}{{B{C^2}}} = \frac{{A{C^2} + A{B^2}}}{{B{C^2}}}\)

Theo ĐL Pythagore ta có

\(A{C^2} + A{B^2} = B{C^2}\)

nên \({\sin ^2}\alpha  + {\cos ^2}\alpha  = \frac{{B{C^2}}}{{B{C^2}}} = 1\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"