Giải bài 4 trang 92 vở thực hành Toán 9

2024-09-14 18:41:46

Đề bài

Một cây cao bị gãy, ngọn cây đổ xuống mặt đất. Ba điểm: gốc cây, điểm gãy, ngọn cây tạo thành một tam giác vuông. Đoạn cây gãy tạo với mặt đất góc \({20^o}\) và chắn ngang lối đi một đoạn 5m (H.4.42). Hỏi trước khi bị gãy, cây cao khoảng bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

Phương pháp giải - Xem chi tiết

+ Gọi A là gốc cây, B là điểm cây gãy, C là ngọn cây.

+ Trong tam giác ABC vuông tại A, ta có: \(AB = AC.\tan C\) tính được AB, \(\cos \widehat {ACB} = \frac{{AC}}{{BC}}\) tính được CB.

+ Chiều cao của cây trước khi đổ gãy là: \(AB + BC\).

Lời giải chi tiết

(H.4.43)

Gọi A là gốc cây, B là điểm cây gãy, C là ngọn cây.

Trong tam giác ABC vuông tại A, ta có \(AB = AC.\tan C = 5.\tan {20^o}\), \(\cos \widehat {ACB} = \frac{{AC}}{{BC}} = \frac{5}{{CB}}\) nên \(BC = \frac{5}{{\cos {{20}^o}}}\).

Do đó, chiều cao của cây trước khi đổ gãy là

\(AB + BC = 5.\tan {20^o} + \frac{5}{{\cos {{20}^o}}} \\= 5\left( {\tan {{20}^o} + \frac{1}{{\cos {{20}^o}}}} \right) \approx 7,1\left( m \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"