Đề bài
Cho tam giác ABC vuông tại A có \(\widehat B = {60^o},BC = 20cm\).
a) Tính AB, AC.
b) Kẻ đường cao AH của tam giác. Tính AH, HB, HC.
Phương pháp giải - Xem chi tiết
a) + Trong tam giác ABC vuông tại A, ta có:
\(AB = BC.\cos B\), \(AC = BC.\sin B\).
b) + Trong tam giác AHB vuông tại H, ta có:
\(AH = AB.\sin B\); \(BH = AB.\cos B\).
+ \(CH = BC - BH\).
Lời giải chi tiết
(H.4.39)
a) Trong tam giác ABC vuông tại A, ta có
\(AB = BC.\cos B = 20.\cos {60^o} = 10\),
\(AC = BC.\sin B = 20.\sin {60^o} = 10\sqrt 3 \).
b) Trong tam giác AHB vuông tại H, ta có
\(AH = AB.\sin B = 10.\sin {60^o} = 5\sqrt 3 \);
\(BH = AB.\cos B = 10.\cos {60^o} = 5\)
Do đó, \(CH = BC - BH = 20 - 5 = 15\left( {cm} \right)\)