Giải bài 4 trang 114 vở thực hành Toán 9

2024-09-14 18:42:09

Đề bài

Cho SA và SB là hai tiếp tuyến cắt nhau của đường tròn (O) (A và B là hai tiếp điểm). Gọi M là một điểm tùy ý trên cung nhỏ AB. Tiếp tuyến của (O) tại M cắt SA tại E và cắt SB tại F.

a) Chứng minh rằng chu vi của tam giác SEF=SA+SB.

b) Giả sử M là giao điểm của đoạn SO với đường tròn (O). Chứng minh rằng \(SE = SF\).

Phương pháp giải - Xem chi tiết

a) + Theo tính chất hai tiếp tuyến cắt nhau suy ra \(EA = ME\), \(FB = FM\).

+ Chu vi của \(\Delta \)SEF là:

\({P_{SEF}} = SE + EF + SF = SE + ME + MF + SF = \left( {SE + EA} \right) + \left( {FB + SF} \right) = SA + SB\).

b) + Theo tính chất hai tiếp tuyến cắt nhau suy ra \(SA = SB\) và SO là tia phân giác của góc ASB.

+ Chứng minh SAB cân tại S nên SO là đường phân giác nên đồng thời là đường cao suy ra \(SO \bot AB\).

+ Chứng minh EF//AB.

+ Chứng minh \(\frac{{SE}}{{SA}} = \frac{{SF}}{{SB}}\), mà \(SA = SB\), do đó \(SE = SF\)

Lời giải chi tiết

(H.5.31)

a) Xét hai tiếp tuyến của (O) cắt nhau tại E ta có \(EA = ME\). Tương tự, có \(FB = FM\).

Chu vi của tam giác SEF là

\({P_{SEF}} = SE + EF + SF = SE + ME + MF + SF = SE + EA + FB + SF\)

\( = \left( {SE + EA} \right) + \left( {FB + SF} \right) = SA + SB\) (điều phải chứng minh)

b) Giả sử M trùng với giao điểm của SO và (O).

Xét hai tiếp tuyến SA, SB của (O) cắt nhau tại S, ta có \(SA = SB\) và SO là tia phân giác của góc ASB.

Tam giác SAB cân tại S (do \(SA = SB\)) có SO là đường phân giác nên đồng thời là đường cao của tam giác, tức là \(SO \bot AB\).

EF là tiếp tuyến của (O) tại M nên \(EF \bot SO\).

Từ đó suy ra EF//AB (cùng vuông góc với SO).

Tam giác SAB có EF//AB nên \(\frac{{SE}}{{SA}} = \frac{{SF}}{{SB}}\), mà \(SA = SB\), do đó \(SE = SF\) (điều phải chứng minh)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"